Evolution of mesoscale anticyclonic vortex and vortex dipoles/multipoles on its base in the South-Eastern Baltic (satellite information: May–July 2015)

  • A. I. Ginzburg Shirshov Institute of Oceanology, Russian Academy of Sciences
  • E. V. Krek Shirshov Institute of Oceanology, Russian Academy of Sciences
  • A. G. Kostianoy Shirshov Institute of Oceanology, Russian Academy of Sciences
  • D. M. Solovyev 1. Marine Hydrophysical Institute. 2. Shirshov Institute of Oceanology, Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2017.45(1).3
Keywords the South-Eastern Baltic, radar images, optical images, mesoscale vortices, vortex dipoles, horizontal water mixing

Abstract

Based on the analysis of a sequence of optical (MODIS-Aqua / Terra, AVHRR NOAA-18, VIIRS-SNPP, TIRS and OLI Landsat-8, ETM + Landsat-7) and radar (Sentinel-1A, Radarsat-2) satellite images, the evolution of mesoscale anticyclonic vortex with a diameter of about 35 km and associated cyclones (two to four) at its periphery was traced for more than a month and a half (from May 15 to July 7, 2015) in the South-Eastern Baltic. Within about a month the position of the anticyclone varied little (center – at about 54° 55’ N, 19°15’ E), but in the interval from June 22 to July 1 the vortex dipole formed by this anticyclone and the cyclone at its northern periphery with a diameter comparable with the diameter of the anticyclone moved eastward with an average speed of about 4 km/day. It is assumed that such movement of this quasisymmetric vortex dipole was due to its location to the north of the Gdansk Bay and the property of a dipole (mushroom-like current) to move in the direction of its jet part under wind forcing (in this case, with the strengthening of the westerly wind).

Author Biography

A. I. Ginzburg, Shirshov Institute of Oceanology, Russian Academy of Sciences

References


  1. Bulycheva E.V., Kostianoy A.G., Krek А.V., Mezhgodovaya izmenchivost neftianogo zagriaznenija morskoj poverkhnosti Yugo-Vostochnoj Baltiki v 2004–2015 gg. (Interannual variability of sea surface oil pollution in the southeastern Baltic Sea in 2004-2015), Sovremennye problemy distantsionnogo zondirovanija Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 74–84.

  2. Fedorov K.N., Ginzburg A.I., Pripoverkhnostnyi sloi okeana (The Near-surface layer of the ocean), Leningrad: Gidrometeoizdat, 1988, 303 p.

  3. Fedorov K.N., Ginzburg A.I., Gribovidnye techeniya (vikhrevye dipoli) – odna iz naibolee rasprostranennykh form kogerentnykh dvizhenii v okeane (Mushroom-like currents (vortex dipoles) – one of the most common forms of coherent movement in the ocean), Kogerentnye structury i samoorganizatsiya okeanskikh dvizhenii, Moskva: Nauka, 1992, pp. 12–20.

  4. Gidrometeorologiia i gidrokhimiia morei SSSR. Proekt “Moria SSSR” (Hydrometeorology and hydrochemistry of the seas of the USSR. Project “The seas of the USSR”), Vol. III, The Baltic Sea, Issue 1, Hydrometeorological conditions / ed. F.S. Terziev, V.A. Rozhkov, A.I. Smirnova. Gidrometeoizdat, St. Peterburg: Gidrometeoizdat, 1992, 450 p.

  5. Ginzburg A.I., Bulycheva E.V., Kostianoy A.G., Solovyev D.M., Vortex dynamics in the Southeastern Baltic Sea from satellite radar data, Oceanology, 2015a, Vol. 55, No. 6, pp. 805–813.

  6. Ginzburg A.I., Bulycheva E.V., Kostianoy A.G., Solovyev D.M., O roli vikhrei v rasprostranenii neftianyh zagriaznenii po akvatorii Yugo-Vostochnoj Baltiki (po dannym sputnikovogo monitoring) (On the role of vortices in the transport of oil pollution in the southeastern Baltic Sea (according to satellite monitoring)), Sovremennye problemy distantsionnogo zondirovanija Zemli iz kosmosa, 2015б, Vol. 12, No. 3, pp. 149–157.

  7. Gurova E.S., O formirovanii i dinamike vikhria u poberezhiia Yugo-vostochnoi Baltiki po dannym distantsionnogo zondirovaniia (On formation and dynamics of eddy near the coast of the south-eastern Baltic), Vestnik Baltiiskogo federalnogo universiteta im. I. Kanta, 2012, Issue 1, pp. 16–21.

  8. Gurova E., Chubarenko B., Remote sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic, Oceanologia, 2012, Vol. 54, No. 4, pp. 631–654.

  9. Gurova E.S., Ivanov A.Yu., Osobennosti proiavleniia gidrodinamicheskih struktur v yugo-vostochnoi chasti Baltiiskogo moria po dannym spektroradiometrov MODIS i sputnikovoi radiolokatsii (Peculiarities of manifestation of hydrodynamic structures in the southeastern part of the Baltic Sea according spectroradiometer MODIS and radar imagery), Issledovanie Zemli iz kosmosa, 2011, No. 4, pp. 41–54.

  10. Horstmann U., Distribution Patterns of Temperature and Water Colour in the Baltic Sea as recorded in Satellite Images: Indicators for Phytoplankton Growth. Berichte Institute fur Meereskunde, Kiel. 1983, Vol. 1, No. 106, 147 p.

  11. Karimova S.S., Lavrova O.Yu., Solovyev D.M., Nabljudenie vikhrevykh struktur Baltijskogo morja s pomoschju radiolokatsionnykh I radiometricheskikh dannykh (Observation of vortical structures in the Baltic Sea by satellite radar and radiometer data), Issledovanie Zemli iz kosmosa, 2011, No. 5, pp. 1–9.

  12. Lavrova O.Yu., Sliki kak indikatory vikhrevoj aktivnosti v pribrezhnoj zone (Slicks as indicators of vortical activity in the coastal zone), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Vol. 2, pp. 118–123.

  13. Lavrova O.Yu., Kostianoy A.G., Lebedev S.A., Mityagina M.I., Ginzburg A.I., Sheremet N.A., Kompleksnyj sputnikovyj monitoring morej Rossii (Integrated satellite monitoring of Russian seas), Moskva: IKI RAN, 2011, 470 p.

  14. Lavrova O.Yu., Mityagina M.I., Kostianoy A.G., Sputnikovye metody vyiavleniya i monitoringa zon ekologicheskogo riska morskikh akvatorii (Satellite methods for detecting and monitoring marine zones of ecological risk), Мoskva: IKI RAN, 2016, 335 p.

  15. Lavrova O., Mityagina M., Bocharova N., Gade M., Multisensor observation of eddies and mesoscale features in coastal zones, Remote Sensing of the European Seas / V. Barale, M. Gade (Eds.), Springer Verlag, 2008, pp. 463–474.

  16. Oberg J., Cyanobacteria blooms in the Baltic Sea, HELCOM Baltic Sea Environment Fact Sheets 2016. 2016. URL: http://helcom.f/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacterial-blooms-in-the-baltic-sea/.

  17. Shchuka T.A., Shchuka S.A., Dinamika kolichestvennyh kharakteristik chuzherodnykh vidov zooplanktona v yugo-vostochnoi chasti Baltiiskogo moria v iyule 2003–2015 gg. v sviazi s termohalinnymi uslovijami (Dynamics of quantitative characteristics of alien species of zooplankton in the south-eastern part of the Baltic Sea in July 2003–2015 in connection with thermohaline conditions), PEMME, 2016, Vol. XXVII, No. 1, pp. 86–108.

  18. Tavri A., Singha S., Lehner S., Topouzelis K., Observation of sub-mesoscale eddies over Baltic Sea using TERRASAR-X and oceanographic data. Proc. ‘Living Planet Symposium 2016’, Prague, Czech Republic, 9–13 May 2016. 2016. (ESA SP-740, August 2016).
Published
2017-12-28
Section
Ocean physics and climate

Most read articles by the same author(s)

1 2 > >>