A MODELING STUDY OF THE INDONESIAN THROUGHFLOW SEASONAL VARIABILITY BASED ON ARGO FLOATS DATA

  • K. V. Lebedev Shirshov Institute of Oceanology, Russian Academy of Sciences
  • A. S. Savin Moscow Institute of Physics and Technology
DOI: 10.29006/1564-2291.JOR-2022.50(4).2
Keywords: Indonesian Seas, numerical modeling, currents, variability, transports, Argo floats

Abstract

Circulation associated with the Indonesian Troughflow (ITF) is studied using the Argo-based Model for Investigation of the Global Ocean (AMIGO). The model consists of a block for variational interpolation to a regular grid of Argo floats data and a block for model hydrodynamic adjustment of variationally interpolated fields. The seasonal and monthly mean temperature, salinity and velocity fields were calculate for the period of 2005–2014 using such an aproach. The mean ITF mass, heat, and salt transports over a period of 2005–2014 based on the AMIGO data is diagnosed as 15.2 ± 2.3 Sv. The maximum value of mass transport was diagnosed in August as 18.8 ± 1.4 Sv, the minimum value of 11.8 ± 2.1 Sv was found in January. The detailed analisys of seasonal variability of the mass transport through the Makassar Strait (Makassar throughflow or MT), the primary inflow path of Pacific water into the Indonesian Seas, were performed. The maximum and minimum values of MT were also diagnosed in August and January as 22.1 ± 1.2 Sv and 9.8 ± 2.1 Sv respectively. It was found significant changes in the MT sutface layer flow during boreal winter (with total reverse in January) associated with the intrusion of the low surface salinity waters of the Java and South China Seas. These modeling results agree very well with the direct velocity measurements.

References


  1. Argo, 2000: Argo float data and metadata from Global Data Assembly Center (Argo GDAC). SEANOE, .

  2. Broeker, W. S., 1991: The great ocean conveyor. Oceanography, 4 (2), 79–89, .

  3. Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Holm, L. Isaksen, P. Kallberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J. N. Thepaut, and F. Vitart, 2011: The ERA-Interim reanalysis; Configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc., 137 (656), 553–597, https://doi.org/10.1002/qj.828.

  4. Ducet, N., P. Y. Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. Oceans, 105 (C8), 19477–19498, https://doi.org/10.1029/2000JC900063.

  5. Godfrey, J. S., 1989: A sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45 (1–2), 89–112, https://doi.org/10.1080/03091928908208894.

  6. Godfrey, J. S., 1996: The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res. Oceans, 101 (C5), 12217–12237, https://doi.org/10.1029/95JC03860.

  7. Gordon, A. L., A. Napitu, B. A. Huber, L. K. Gruenburg, K. Pujiana, T. Agustiadi, A. Kuswardani, N. Mbay, and A. Setiawan, 2019: Makassar Strait throughflow seasonal and interannual variability: An overview. J. Geophys. Res. Oceans, 124 (6), 3724–3736, https://doi.org/10.1029/2018JC014502.

  8. Gordon, A. L., J. Sprintall, H. M. Van Aken, D. Susanto, S. Wijffels, R. Molcard, A. Ffield, W. Pranowo, and S. Wirasantosa, 2010: The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50 (2), 115–128, https://doi.org/10.1016/j.dynatmoce.2009.12.002.

  9. Gordon, A. L., R. D. Susanto, and K. Vranes, 2003: Cool Indonesian throughflow is a conse­quence of restricted surface layer flow. Nature, 425, 824–828, https://doi.org/10.1038/nature02038.

  10. Hirst, A. C. and J. S. Godfrey, 1993: The Role of Indonesian Throughflow in a Global Ocean GCM. J. Phys. Oceanogr., 23 (6), 1057–1086, https://doi.org/10.1175/1520-0485(1993)023<1057:TROITI>2.0.CO;2.

  11. Ivanov, Yu. A., K. V. Lebedev, and A. S. Sarkisyan, 1997: Generalized hydrodynamic adjustment method (GHDAM). Izvestiya, Atmospheric and Oceanic Physics, 33 (6), 752–757.

  12. Kurnosova, M. O. and K. V. Lebedev, 2014: Study of transport variations in the Kuroshio extension system at 35°N, 147°E based on the data of Argo floats and satellite altimetry. Doklady Earth Sciences, 458 (1), 1154–1157.

  13. Lebedev, K. V., 1999: Average annual climate of the ocean. Part 2: Integral characteristics of the world ocean climate (mass, heat and salt transports). Izvestiya, Atmospheric and Oceanic Physics, 35 (1), 87–96.

  14. Lebedev, K. V., 2016: An Argo-Based Model for Investigation of the Global Ocean (AMIGO). Oceanology, 56 (2), 172–181, https://doi.org/10.1134/S0001437016020144.

  15. Lebedev, K. V., 2017: An Argo-Based Model for Investigation of the Global Ocean: a synthesys of observations and numerical modeling. Journal of Oceanological Research, 45 (1), 53–69, https://doi.org/10.29006/1564-2291.JOR-2017.45(1).6.

  16. Lebedev, K. V., S. DeCarlo, P. W. Hacker, N. A. Maximenko, J. T. Potemra, and Y. Shen, 2010: Argo Products at the Asia-Pacific Data-Research Center. Eos Trans. AGU, 91 (26), Ocean Sci. Meet. Suppl., Abstract IT25A-01.

  17. Lebedev, K. V. and M. I. Yaremchuk, 2000: A diagnostic study of the Indonesian Throughflow. J. Geophys. Res. Oceans, 105 (C5), 11243–11258, https://doi.org/10.1029/2000JC900015.

  18. Lek, L., 1938: Die ergebnisse der strom- und serienmessungen. The Snellius Expedition in the Eastern Part of the Netherlands East-Indies 1929–1930, II (3), Brill, Leiden, 169 p.

  19. McCreary, J. P., T. Miyama, R. Furue, T. Jensen, H.-W. Kang, B. Bang, and T. Qu, 2007: Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans. Prog. Oceanogr., 75 (1), 70–114, https://doi.org/10.1016/j.pocean.2007.05.004.

  20. Potemra, J. T. and N. Schneider, 2007: Influence of Low-Frequency Indonesian Throughflow Transport on Temperatures in the Indian Ocean in a Coupled Model. J. Clim., 20 (7), 1339–1352, https://doi.org/10.1175/JCLI4146.1.

  21. Semtner, A. J. and R. M. Chervin, 1988: A simulation of the global ocean circulation with resolved eddies. J. Geophys. Res. Oceans, 93 (C2), 15502–15522, https://doi.org/10.1029/JC093iC12p15502.

  22. Sprintall, J., A. L. Gordon, S. E. Wijffels, M. Feng, S. Hu, A. Koch-Larrouy, H. Phillips, D. Nugroho, A. Napitu, K. Pujiana, R. D. Susanto, B. Sloyan, B. Peсa-Molino, D. Yuan, N. F. Riama, S. Siswanto, A. Kuswardani, Z. Arifin, A. J. Wahyudi, H. Zhou, T. Nagai, J. K. Ansong, R. Bourdalle-Badiй, J. Chanut, F. Lyard, B. K. Arbic, A. Ramdhani, and A. Setiawan, 2019: Detecting Change in the Indonesian Seas. Front. Mar. Sci., 6, 257, https://doi.org/10.3389/fmars.2019.00257.

  23. Sprintall, J., S. E. Wijffels, R. Molcard, and I. Jaya, 2009: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res. Oceans, 114 (C7), C07001, https://doi.org/10.1029/2008JC005257.

  24. Van Everdingen, E., 1930: The Snellius Expedition. ICES Journal of Marine Science, 5 (3), 320–328, https://doi.org/10.1093/icesjms/5.3.320.

  25. Van Riel, P. M., 1930: The Snellius Expedition. Nature, 125, 761–762, https://doi.org/10.1038/125761a0.

  26. Wyrtki, K., 1961: Physical Oceanography of the Southeast Asian Waters. Scripps Institution of Oceanography, The University of California, La Jolla, California, 195 p.

  27. Wyrtki, K., 1987: Indonesian through flow and the associated pressure gradient. J. Geophys. Res. Oceans, 92 (C12), 12941–12946, https://doi.org/10.1029/JC092iC12p12941.
Published
2022-12-29
Section
Ocean physics and climate