DETECTION OF RED SEA AND PERSIAN GULF WATERS IN THE NORTHWESTERN PART OF THE INDIAN OCEAN BY ARGO FLOATS DATA

  • K. V. Lebedev Shirshov Institute of Oceanology, Russian Academy of Sciences
  • B. N. Filyushkin Shirshov Institute of Oceanology, Russian Academy of Sciences
  • N. G. Kozhelupova Shirshov Institute of Oceanology, Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2021.49(4).2
Keywords Red Sea, Persian Gulf, Arabian Sea, modeling, Somali current, Argo floats

Abstract

Peculiarities of the spatial distribution of the Red Sea and the Persian Gulf waters in the northwestern part of the Indian Ocean have been investigated based on the Argo float measurement database. 27128 profiles of temperature and salinity were taken into account. To process these data, we used the Argo Model for Investigation of the Global Ocean (AMIGO). This technique allowed us for the first time to obtain a complete set of oceanographic characteristics up to a depth of 2000 m for different time intervals of averaging (month, season, years). Joint analysis of the variability of hydrological characteristics within the depths of 0–500 m during the summer monsoon clearly showed the influence of the Somali Current on the dynamics of the waters of this region: the formation of the largest anticyclone (Great Whirl), coastal upwelling zones, redistribution of water masses in the Gulf of Oman and the Arabian Sea. The main influence on the formation of the temperature and salinity fields is exerted by the Persian Gulf waters. The same analysis of the variability of fields within the depths of 600–1000 m showed the role of the outflow of the Red Sea waters from the Gulf of Aden in the formation of deep waters in this area during the year. And, finally, at depths of 1000–1500 m, a deep anticyclonic eddy is formed, the southern branch of which, moving westward, at 7°N. reaches Africa and turns to the south with a narrow stream of Red Sea waters, and then, crossing the equator, reaches 15°S. An original result was obtained for determining the temporal characteristics of the Somali Current: the time of its formation, the values of transports and life expectancy (according to model estimates for 7 years (1960–1996)).

References


  1. Argo, 2000: Argo float data and metadata from Global Data Assembly Center (Argo GDAC). SEANOE, http://doi.org/10.17882/42182.

  2. Armi, L., D. Hebert, N. Oakey, J.F. Price, P.L. Richardson, H.T. Rossby, and B. Ruddick, 1989: Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19(3), 354–370, https://doi.org/10.1175/1520-0485(1989)019%3C0354:TYITLO%3E2.0.CO;2.

  3. Ayouche, A., C. de Marez, M. Morvan, P. L’Hegaret, X. Carton, B. Le Vu, and A. Stegner, 2021: Structure and dynamics of the Ras al Hadd Oceanic dipole in the Arabian Sea. Oceans, 2(1), 105–125, https://doi.org/10.3390/oceans2010007.

  4. Bashmachnikov, I., F. Neves, T. Calheiros, and X. Carton, 2015: Properties and pathways of Mediterranean water eddies in the Atlantic. Progr. Oceanogr., 137, 149–172, https://doi.org/10.1016/j.pocean.2015.06.001.

  5. Beal, L.M., A. Ffield, and A.L. Gordon, 2000: Spreading of Red Sea overflow waters in the Indian Ocean. J. Geophys. Res. Oceans, 105(C4), 8549–8564, https://doi.org/10.1029/1999JC900306.

  6. Bower, A.S. and H.H. Furey, 2012: Mesoscale eddies in the Culf of Aden and their impact on the spreading of Red Sea outflow water. Progr. Oceanogr., 96(1), 14–39, https://doi.org/10.1016/j.pocean.2011.09.003.

  7. Bower, A.S., H.D. Hunt, and J.F. Price, 2000: Character and dynamics of the Red Sea and Persian Gulf outflows. J. Geophys. Res. Oceans, 105(C3), 6387–6414, https://doi.org/10.1029/1999JC900297.

  8. Bower, A.S., W.E. Johns, D.M. Fratantoni, and H. Peters, 2005: Equilibration and circulation of Red Sea Outflow Water in the western Gulf of Aden. J. Phys. Oceanogr., 35(11), 1963–1985, https://doi.org/10.1175/JPO2787.1.

  9. Bryden, H.L., J. Candela, and T.H. Kinder, 1994: Exchange through the Strait of Gibraltar. Progr. Oceanogr., 33(3), 201–248, https://doi.org/10.1016/0079-6611(94)90028-0.

  10. Bruce, J.G., 1979: Eddies off the Somali Coast during the southwest monsoon. J. Geophys. Res. Oceans, 84(C12), 7742–7748, https://doi.org/10.1029/JC084iC12p07742.

  11. Bubnov, V.A., 1971: Structure and dynamics of the Mediterranean waters in the Atlantic Ocean. Journal of Oceanological Research, 22, 220–278.

  12. Carton, X., L. Cherubin, J. Paillet, Y. Morel, A. Serpette, and B. Le Cann, 2002: Meddy coupling with a deep cyclone in the Culf of Cadiz. Journal of Marine Systems, 32(1–3), 13–42, https://doi.org/10.1016/S0924-7963(02)00028-3.

  13. Carton, X., P. L’Hegaret, and R. Baraille, 2012: Mesoscale variability of water masses in the Arabian Sea as revealed by ARGO floats. Ocean Sci., 8(2), 227–248, https://doi.org/10.5194/os-8-227-2012.

  14. Cox, M.D., 1970: A mathematical model of the Indian Ocean. Deep Sea Res., 17(1), 47–75, https://doi.org/10.1016/0011-7471(70)90087-2.

  15. Danilov, S.D. and D. Gurarie, 2000: Quasi-two-dimensional turbulence. Physics-Uspekhi, 43(9), 863–900, https://doi.org/10.1070/PU2000v043n09ABEH000782.

  16. Dee, D.P., S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haimberger, S.B. Healy, H. Hersbach, E.V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A.P. McNally, B.M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J.R. Meteorol. Soc., 137(656), 553–597, https://doi.org/10.1002/qj.828.

  17. Demidov, A.N., B.N. Filyushkin, and N.G. Kozhelupova, 2012: Detection of Mediterranean lenses in the Atlantic Ocean by profilers of the Argo Project. Oceanology, 52(2), 171–180, https://doi.org/10.1134/S0001437012020038.

  18. Demin, Yu.L., Yu.A. Ivanov, K.V. Lebedev, and I.G. Usychenko, 1990: Current field calculation using a diagnostic and adaptation model for the Megapolygon region. Oceanology, 30(4), 405–410.

  19. Demin, Yu.L. and I.G. Usychenko, 1982: Water circulation in the area of the Somali upwelling in the summer. Oceanology, 22(6), 663–666.

  20. Ducet, N., P.Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. Oceans, 105(C8), 19477–19498, https://doi.org/10.1029/2000JC900063.

  21. Duing, W. and K.-H. Szekielda, 1971: Monsoonal response in the Western Indian Ocean. J. Geophys. Res., 76(18), 4181–4187, https://doi.org/10.1029/JC076i018p04181.

  22. Fedorov, K.N. and S.L. Meschanov, 1988: Structure and propagation of Red Sea waters in the Gulf of Aden. Oceanology, 28(3), 279–284.

  23. Filyushkin, B.N. and E.A. Plakhin, 1995: Experimental study of the first stage of Mediterranean water lens formation. Oceanology, 35(6), 797–804.

  24. Filyushkin, B.N., K.V. Lebedev, and N.G. Kozhelupova, 2017: Detection of intermediate Mediterranean Waters in the Atlantic Ocean by ARGO floats data. Oceanology, 57(6), 763–771, https://doi.org/10.1134/S0001437017060042.

  25. Filyushkin, B.N., K.V. Lebedev, and N.G. Kozhelupova, 2018: Peculiarities of the Mediterranean waters spreading in the Atlantic Ocean by Argo floats data. Proceedings of N.N. Zubov State Oceanographic Institute “Ocean and sea research”, Moscow, 219, 235–248.

  26. Filyushkin, B.N. and N.G. Kozhelupova, 2020: Reviw of the investigations of the Mediterranean intrathermocline eddies in the Atlantic ocean. Journal of Oceanological Research, 48(3), 123–147, https://doi.org/10.29006/1564-2291.JOR-2020.48(3).8.

  27. Fratantoni, D.M., A.S. Bower, W.E. Johns, and H. Peters, 2006: Somali Current rings in the eastern Gulf of Aden. J. Geophys. Res. Oceans, 111(C9), C09039, https://doi.org/10.1029/2005JC003338.

  28. Gamsakhurdiya, G.R., S.L. Meschanov, and G.K. Shapiro, 1991: Seasonal variations in the distribution of Red Sea waters in the northwestern Indian Ocean. Oceanology, 31(1), 32–37.

  29. Hamon, B.V., 1967: Medium-scale temperature and salinity structure in the upper 1500 m in the Indian Ocean. Deep Sea Res., 14(2), 169–181, https://doi.org/10.1016/0011-7471(67)90003-4.

  30. Ibrayev, R.A., 2001: Model of enclosed and semi-enclosed sea hydrodynamics. Russ. J. Numer. Anal. Math. Model., 16(4), 291–304, http://doi.org/10.1515/rnam-2001-0404.

  31. Ivanov, Yu.A. and K.V. Lebedev, 1996: Numerical simulation of the North Atlantic response to a nonstationary wind forcing. Izvestiya, Atmospheric and Oceanic Physics, 32(5), 620–627.

  32. Ivanov, Yu.A. and K.V. Lebedev, 2000: Interseasonal variability of the world ocean climate. Izvestiya, Atmospheric and Oceanic Physics, 36(1), 119–130.

  33. Ivanov, Yu.A. and K.V. Lebedev, 2003: Model studies of the estimate of the contribution of wind-driven currents to the general circulation of the World Ocean. Oceanology, 43(6), 779–785.

  34. Ivanov, Yu.A., K.V. Lebedev, and A.S. Sarkisyan, 1997: Generalized hydrodynamic adjustment method (GHDAM). Izvestiya, Atmospheric and Oceanic Physics, 33(6), 752–757.

  35. Johns, W.E., F. Yao, D.B. Olson, S.A. Josey, J.P. Grist, and D.A. Smeed, 2003: Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. J. Geophys. Res. Oceans, 108(C12), 3391, https://doi.org/10.1029/2003JC001881.

  36. Kamenkovich, V.M., M.N. Koshlyakov, and A.S. Monin, 1986: Synoptic Eddies in the Ocean. Springer, Dordrecht, 444 p., https://doi.org/10.1007/978-94-009-4502-9.

  37. Lebedev, K.V., 1999: Average annual climate of the ocean. Part 2: Integral characteristics of the world ocean climate (mass, heat and salt transports). Izvestiya, Atmospheric and Oceanic Physics, 35(1), 87–96.

  38. Lebedev, K.V., 2016: An Argo-Based Model for Investigation of the Global Ocean (AMIGO). Oceanology, 56(2), 172–181, https://doi.org/10.1134/S0001437016020144.

  39. Lebedev, K.V., 2017: An Argo-Based Model for Investigation of the Global Ocean: a synthesys of observations and numerical modeling. Journal of Oceanological Research, 45(1), 53–69, https://doi.org/10.29006/1564-2291.JOR-2017.45(1).6.

  40. Lee, C.M., B.H. Jones, K.H. Brink, and A.S. Fisher, 2000: The upper-ocean response to monsoonal forcing in the Arabian Sea: seasonal and spatial variability. Deep Sea Res. II, 47(7–8), 1177–1226, https://doi.org/10.1016/S0967-0645(99)00141-1.

  41. Levitus, S., R. Gelfeld., T. Boyer, and D. Johnson, 1994: Results of the NODC and IOC oceanographic data archacology and rescue projects. Key to Oceanogr. Rec. Doc., 19, Natl. Oceanogr. Data Cent., Washington, D.C.

  42. L’Hegaret, P., L. Lacour, X. Carton, G. Roullet, R. Baraille, and S. Correard, 2013: A seasonal dipolar eddy near Ras Al Hamra (Sea of Oman). Ocean Dynamics, 63, 633–659, https://doi.org/10.1007/s10236-013-0616-2.

  43. L’Hegaret, P., X. Carton, I. Ambar, C. Menesguen, B.L. Hua, L. Cherubin, A. Aguiar, B. Le Can, N. Daniault, and N. Serra, 2014: Evidence of Mediterranean Water dipole collision in the Gulf of Cadiz. J. Geophys. Res. Oceans, 119(8), 5337–5359, https://doi.org/10.1002/2014JC009972.

  44. L’Hegaret, P., X. Carton, S. Louazel, and G. Boutin, 2016: Mesoscale eddies and submesoscale structures of Persian Gulf Water off the Omani coast in spring 2011. Ocean Sci., 12(3), 687–701, https://doi.org/10.5194/os-12-687-2016.

  45. L’Hegaret, P., C. de Marez, M. Morvan, T. Meunier, and X. Carton, 2021: Spreading and vertical structure of the Persian Gulf and Red Sea outflows in the northwestern Indian Ocean. J. Geophys. Res. Oceans, 126(4), e2019JC015983, https://doi.org/10.1029/2019JC015983.

  46. Luther, M.E. and J.J. O’Brien, 1985: A model of the seasonal circulation in the Arabian Sea forced by observed winds. Prog. Oceanogr., 14, 353–385, https://doi.org/10.1016/0079-6611(85)90017-5.

  47. Marez de, C., X. Carton, S. Correard, P. L’Hegaret, and M. Morvan, 2020: Observations of a deep submesoscale cyclonic vortex in the Arabian Sea. Geophys. Res. Lett., 47(13), e2020GL087881, https://doi.org/10.1029/2020GL087881.

  48. Marez de, C., P. L’Hegaret, M. Morvan, and X. Carton, 2019: On the 3D structure of eddies in the Arabian Sea. Deep Sea Res. I, 150, 103057, https://doi.org/10.1016/j.dsr.2019.06.003.

  49. Meschanov, S.L. and G.I. Shapiro, 1998: A young lens of Red Sea Water in the Arabian Sea. Deep Sea Res., 45(1), 1–13, https://doi.org/10.1016/S0967-0637(97)00018-6.

  50. Neiman, V.G., V.A. Burkov, and A.D. Shcherbinin, 1997: Dinamika vod Indiyskogo okeana (Dynamics of the Indian Ocean). Moscow, Nauchnyj Mir, 232 p.

  51. Prasad, T.G., M. Ikeda, and S.P. Kumar, 2001: Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea. J. Geophys. Res. Oceans, 106(C8), 17059–17071, https://doi.org/10.1029/2000JC000480.

  52. Richardson, P.L., J.F. Price, D. Walsh, L. Armi, and M. Schroder, 1989: Tracking three Meddies with SOFAR floats. J. Phys. Oceanogr., 19(3), 371–383, https://doi.org/10.1175/1520-0485(1989)019%3C0371:TTMWSF%3E2.0.CO;2.

  53. Richardson, P.L., A.S. Bower, and W. Zenk, 2000: A census of Meddies tracked by floats. Prog. Oceanogr., 45(2), 209–250, https://doi.org/10.1016/S0079-6611(99)00053-1.

  54. Schott, F., 1983: Monsoon response of the Somali Current and associated upwelling. Prog. Oceanogr., 12(3), 357–381, https://doi.org/10.1016/0079-6611(83)90014-9.

  55. Shapiro, G.I., S.L. Meschanov, and A.B. Polonsky, 1994: Red Sea water lens formation in Arabian Sea. Oceanology, 34(1), 26–31.

  56. Stockman, V.B., M.N. Koshlyakov, R.V. Ozmidov, L.M. Fomin, and A.D. Yampolsky, 1969: Dlitel’nye izmereniya izmenchivosti fizicheskikh polei na okeanicheskikh poligonakh, kak novyj etap v issledovanii okeana (Long-term measurements of the physical field variability on oceanic polygons, as a new stage in the ocean research). Doklady Akademii Nauk SSSR, 186(5), 1070–1073.

  57. Swallow, J.C., 1983: Eddies in the Indian Ocean. Eddies in Marine Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 200–218, https://doi.org/10.1007/978-3-642-69003-7_11.

  58. Swallow, J.C., R.L. Molinari, J.G. Bruce, O.B. Brown, and R.H. Evans, 1983: Development of Near-Surface Flow Pattern and Water Mass Distribution in the Somali Basin in Response to the Southwest Monsoon of 1979. J. Phys. Oceanogr., 13(8), 1398–1415, https://doi.org/10.1175/1520-0485(1983)013%3C1398:DONSFP%3E2.0.CO;2.

  59. Trott, C.B., B. Subrahmanyam, A. Chaigneau, and T. Delcroix, 2018: Eddy tracking in the northwestern Indian Ocean during southwest monsoon regimes. Geophys. Res. Lett., 45(13), 6594–6603,https://doi.org/10.1029/2018GL078381.

  60. Vic, C., G. Roullet, X. Carton, and X. Capet, 2014: Mesoscale dynamics in the Arabian Sea and a focus on the Great Whirl life cycle: A numerical investigation using ROMS. J. Geophys. Res. Oceans, 119(9), 6422–6443, https://doi.org/10.1002/2014JC009857

  61. Warren, B., H. Stommel, and J.C. Swallow, 1966: Water masses and patterns of flow in the Somali Basin during the southwest monsoon of 1964. Deep Sea Res., 13(5), 825–860, https://doi.org/10.1016/0011-7471(76)90907-4.

  62. Wyrtki, K., 1971: Oceanographic Atlas of the International Indian Ocean Expedition. National Science Foundation, Washington, D.C., 531 p.

  63. Yegorikhin, V.D., Y.A. Ivanov, V.G. Kort, M.N. Koshlyakov, Y.F. Lukashev, Y.G. Morozov, I.M. Ovchinnikov, V.T. Paka, T.B. Tsybaneva, I.F. Shadrin, and S.M. Shapovalov, 1987: An intrathermocline lens of Mediterranean Water in the tropical North Atlantic. Oceanology, 27(2), 121–127.
Published
2021-12-30
Section
Ocean physics and climate

Most read articles by the same author(s)

1 2 > >>