Experimental studies of the thermohaline structure at the continental slope in the northwestern Japan Sea

  • A. Yu. Lazaryuk V.I. Ilyichev Pacifc Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
  • D. D. Kaplunenko V.I. Ilyichev Pacifc Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
  • A. G. Ostrovskii Shirshov Institute of Oceanology, Russian Academy of Sciences
  • V. B. Lobanov V.I. Ilyichev Pacifc Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
  • O. O. Trusenkova V.I. Ilyichev Pacifc Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
  • S. Yu. Ladychenko V.I. Ilyichev Pacifc Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2017.45(1).5
Keywords CTD data analysis, moored profiler, infrared satellite imagery, ocean thermohaline structure, mesoscale eddy, the Japan Sea, the Primorye Current, 4D oceanography

Abstract

The pioneering long-term survey of the NW Japan Sea thermohaline structure was implemented for almost half a year from April 18, 2015 through October 15, 2015. The measurements were carried out by using the SBE 52-MP CTD probe at the moored profiler Aqualog. The profiler mooring was deployed at the continental slope in the area east of Peter the Great Bay. A novel approach to the primary processing of the profiler CTD data is discussed. It features a new data processing software CTD data_cor_SBE_52-МР. The profiler data is verified based on ship measurements at a cross-slope transect on May 30, 2015. The processing and verification of the SBE 52-MP CTD observations allows for the data quality improvement up to the WOCE standards. The profiler mooring data and the ship measurements reveal variations in the ocean temperature, salinity, and density stratification due to ocean eddy passage nearby the mooring site. The NOAA/AVHRR infrared satellite imagery is used for detection and analysis of this eddy and its movement southwestward along the Primorye Current zone. Overall, the study demonstrates a powerful potential of combined analysis of long-term time series of the in situ data at fixed geographical location, the ship borne oceanographic section, and the multispectral satellite information in compliance with the 4D oceanography requirements.

Author Biography

A. Yu. Lazaryuk, V.I. Ilyichev Pacifc Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences

References


  1. Arkhipkin V.S., Lazaryuk A.Yu., Levashov D.E., Ramazin A.N., Okeanologiya, Instrumental’nye metody izmereniya osnovnykh parametrov morskoi vody (Oceanology. Instrumental methods for measuring the main parameters of sea water), Moskva: Izd-vo MAKS Press, 2009, 335 p.

  2. Danchenkov М.А., Lobanov V.B., Riser S.C., K. Kim, M. Takematsu, and J.-H. Yoon, A history of physical oceanography research in the Japan/East Sea, Oceanography, 2006, Vol. 19. No. 3, pp. 18–31.

  3. Fofonoff N.P., Millard R.S., Algorithms for computation of fundamental properties of sea water, UNESCO Technical Papers in Marine Science, 1983, Vol. 44, 53 p.

  4. Ginzburg A.I., Kostyanoi A.G., Ostrovskii A.G., Poverkhnostnaya tsirkulyatsiya Yaponskogo morya (sputnikovaya informatsiya i dannye dreifuyushchikh buev) (Surface circulation of the Sea of Japan (satellite information and drifting buoy data)), Issledovanie Zemli iz kosmosa, 1998, No. 1, pp. 66–83.

  5. Ladychenko S.Yu., Izmenenie termicheskoi struktury poverkhnostnykh vod u poberezh’ya Primor’ya v osennii period 2000 (Change in the thermal structure of surface waters off the coast of Primorye in the autumn 2000), In: Okeanologicheskie issledovaniya (Oceanological research), Vladivostok: Dal’nauka, 2002, pp. 75–83.

  6. Ladychenko S.Yu., Lobanov V.B., Sinopticheskie vikhri v raione zaliva Petra Velikogo po sputnikovym dannym (Synoptic vortexes in the area of Peter the Great Bay according to satellite data), Issledovanie Zemli iz kosmosa, 2013, No. 4, pp. 3–15.

  7. Lazaryuk A.Yu., Dinamicheskaya korrektsiya CTD-dannykh (Dynamic correction of the CTD data), Podvodnye issledovaniya i robototekhnika, 2009, No. 2(8), pp. 59–71.

  8. Lazaryuk A.Yu., Korrektsiya dinamicheskoi pogreshnosti dannykh glubokovodnykh gidrologicheskikh nablyudenii s pomoshch’yu CTD-zondov (CTDdata_cor) (Correction of the dynam- ic error of CTD data (CTDdata_cor)), Certifcate of state registration of the PC computer program No. 2010617298, 2010, November 1.

  9. Lobanov V.B., Ponomarev V.I., Salyuk A.N., Tishchenko P.Ya., Telli L.D., Struktura i dinamika sinopticheskikh vikhrei severnoi chasti Yaponskogo morya, Dal’nevostochnye morya (Structure and Dynamics of Synoptic Vortices in the Northern Part of the Sea of Japan), In: Okeanologicheskie issledovaniya (Oceanological research), Vol. 1, Moscow: Nauka, 2007, pp. 450–473.

  10. Nikitin A.A., Yurasov G.I., Sinopticheskie vikhri Yaponskogo morya po sputnikovym dannym (Synoptic vortices of the Sea of Japan according to satellite data), Issledovanie Zemli iz kosmosa, 2008, No. 5, pp. 2–57.

  11. Ostrovskii A.G., Zatsepin A.G., Soloviev V.A., Tsibulsky A.L., Shvoev D.A., Autonomous system for vertical profling of the marine environment at a moored station, Oceanology, 2013, Vol. 53, No. 2, pp. 233–242.

  12. Ostrovskii A.G., Zayakorennye mobil’nye profliruyushchie apparaty (Moored mobile proflers), In: Osvoenie glubin okeana (The development of the depths of the ocean), Moscow: Oruzhie i tekhnologii, 2017 (in pint).

  13. Operator’s manual. SBE Data Processing 7.23.2, http://www.seabird.com

  14. SBE 52-MP Moored Profiler CTD & (optional) Dissolved Oxygen Sensor, http://www.seabird.com

  15. Ponomarev V.I., Faiman P.A., Dubina V.A., Ladychenko S.Yu., Lobanov V.B., Sinopticheskaya vikhrevaya dinamika nad severo-zapadnym materikovym sklonom i shel’fom Yaponskogo morya (modelirovanie i rezul’taty distantsionnykh nablyudenii) (Synoptic vortex dynamics over the north-western continental slope and the shelf of the Sea of Japan (modeling and results of remote observations)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 100–104.

  16. Park K.-A., Ullman D.S., Kim K., Chung J.Y., Kim K.-R., Spatial and temporal variability of satellite-observed Subpolar Front in the East /Japan Sea, Deep Sea Res. I., 2007, Vol. 54, No. 4, pp. 453–470.

  17. The acquisition, calibration, and analysis of CTD data, UNESCO technical papers in marine science, 1988. Vol. 54. 94 р.

  18. Yurasov G.I., Vanin N.S., Nikitin A.A., Characteristics of fronts in the Sea of Japan in accordance with vessel and satellite measurements, Russian Meteorology and Hydrology, 2009, Vol. 34, No. 4, pp. 256–264.

  19. Yurasov G.I., Yarichin V.G., Techeniya Yaponskogo moray (The currents of the Sea of Japan), Vladivostok: DVO RAN, 1991, 176 p.

  20. Zhadan P.M., Vashchenko M.A., Lobanov V.B., Kotova S.A., Issledovanie vliyaniya faktorov sredy na nerest morskogo ezha Strongylocentrotus intermedius (Investigation of the influence of environmental factors on the spawning of a sea urchin Strongylocentrotus intermedius), Vestnik DVO RAN, 2013, No. 6, pp. 170–179.

  21. Zvalinskii V.I., Lobanov V.B., Zakharkov S.P., Tishchenko P.Ya., Chlorophyll, delayed fluorescence, and primary production in the northwestern part of the Sea of Japan, Oceanology,. 2006, Vol. 46, No. 1, pp. 23–32.

Published
2017-12-28
Section
Ocean physics and climate

Most read articles by the same author(s)