ACADEMICIAN VLADIMIR EVGENIEVICH ZAKHAROV (1939–2023) AND SHIRSHOV INSTITUTE OF OCEANOLOGY

  • S. I. Badulin Shirshov Institute of Oceanology, Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2023.51(3).13
Keywords Academician V. E. Zakharov, Laboratory of Nonlinear Wave Processes IO RAS, Chair of Thermohydromechanics MIPT, RAS Scientific Council on Nonlinear Dynamics, soliton theory, theory of weak (wave) turbulence, Kolmogorov-Zakharov spectra, the reduced Zakharov equations for water waves, the Dirac medal in theoretical physics

Abstract

In the early morning of August 20, 2023, at the age of 85, the outstanding Soviet and Russian scientist, poet and public figure, Academician, Doctor of Physical and Mathematical sciences Vladimir Evgenievich Zakharov passed away. On August 1, he celebrated his 84th birthday. For many years, Academician Zakharov headed the Laboratory of Nonlinear Wave Processes at the Shirshov Institute of Oceanology of RAS and actively participated in the development of the Institute as a center of advanced fundamental research. Based on the memories of colleagues, the author examines the role of Vladimir Evgenievich in the life of the Institute and the place of the Institute in the life of Vladimir Evgenievich himself. A brief summary of the main stages of his eventful life as a world-famous scientist, talented poet and concerned citizen is given at the end of the article. A large selection of materials about the life of Vladimir Evgenievich can be found on the memorial page (http://kao.itp.ac.ru/Zakharov/).

References


  1. Badulin, S. I., A. N. Pushkarev, D. Resio, and V. E. Zakharov, 2005: Self-similarity of wind-driven seas. Nonl. Proc. Geophys., 12, 891–946.

  2. Badulin, S. I., A. V. Babanin, D. Resio, and V. E. Zakharov, 2007: Weakly turbulent laws of wind-wave growth. J. Fluid Mech., 591, 339–378.

  3. Hasselmann, K., 1962: On the nonlinear energy transfer in a gravity wave. Part 1. General theory. J. Fluid Mech., 12, 481–500.

  4. Memorial page in honor of Vladimir E. Zakharov (1st of August 1939 – 20th of August 2023). http://kao.itp.ac.ru/Zakharov/.

  5. Kitaigorodskii, S. A., 1962: Applications of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process. Bull. Acad. Sci. USSR, Geophys. Ser., Engl. Transl., 1, 73–80.

  6. Krasitskii, V. P., 1994: On reduced Hamiltonian equations in the nonlinear theory of water surface waves. J. Fluid Mech., 272, 1–20.

  7. Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505–531.

  8. Zakharov, V. E. and N. N. Filonenko, 1966: Energy spectrum for stochastic oscillations of the surface of a fluid. Soviet Physics Doklady, 170 (6), 1292–1295.

  9. Zakharov, V. E. and M. M. Zaslavsky, 1982 (a): Intervals of input and dissipation in the weak-turbulence theory of wind-generated waves. Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics, 18 (10), 1066–1076.

  10. Zakharov, V. E. and M. M. Zaslavsky, 1982 (b): Kinetic equation and Kolmogorov spectra in the weak-turbulence theory of wind waves. Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics, 18 (9), 970–980.

  11. Zakharov, V. E. and M. M. Zaslavsky, 1983 (a): Dependence of wave parameters on the wind velocity, duration of its action and fetch in the weak-turbulence theory of water waves. Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics, 19 (4), 300–306.

  12. Zakharov, V. E. and M. M. Zaslavsky, 1983 (b): Shape of spectrum of energy carrying compo­nents of a water surface in the weak-turbulence theory of wind waves. Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics, 19 (3), 207–213.

  13. Zakharov, V. E., 2018: Analytic theory of a wind-driven sea. Procedia IUTAM, 26, 43–58, No. IUTAM Symposium Wind Waves, 4–8 September 2017, London, 2018.

  14. Zakharov, V. E., S. I. Badulin, V. V. Geogjaev, and A. N. Pushkarev, 2019: Weak-Turbulent Theory of Wind-Driven Sea. Earth Space Sci., 6, 540–556.
Published
2023-11-10
Section
History and personalities