PROBLEMS OF SEDIMENTS TRANSPORT MODELING IN THE COASTAL AREA

  • R. D. Kosyan Shirshov Institute of Oceanology, Russian Academy of Sciences
  • B. V. Divinsky Shirshov Institute of Oceanology, Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2021.49(1).6
Keywords full-scale experiment, suspended sediments, alongshore flows, mathematical modeling

Abstract

Due to the development of measuring instruments, a more detailed analysis of the wave field and the field of suspended sediments spatio-temporal characteristics has become possible. Through the efforts of Russian specialists over the past decades:

  1. A unique database of observations of the sediment movement in storm situations in different physical and geographical areas of the coastal zone of the Black, Baltic, North, Mediterranean, South China Seas has been collected, supplemented by extensive data of laboratory experiments in the best laboratory in Europe (Hannover, Germany). New experimental material has been obtained to determine the physical features of sediment transport by wave flow.
  2. The main mechanisms controlling the amplitude and phase relationships of the concentration fluctuations and discharge of suspended sediment on time scales less than the period of the peak of the wind wave spectrum are considered. The presence of low-frequency fluctuations in sediment concentration with a period of the order of several periods of wind waves and an amplitude several times higher than the average value of concentration is noted.
  3. The previously unexplored problem of the wave energy frequency distribution in the spectrum of surface waves influence on the sediment transport has been analyzed. Differences in the response of the washed-out bottom to an external disturbance, represented by irregular surface waves with constant integral characteristics (significant wave height and period of the spectrum peak) and variable wave energy frequency distribution, were revealed.
  4. The influence of swell waves on the redistribution of bottom sediments in the sea coastal zone was investigated. It is shown that dividing the wave field into separate components allows a more correct description of the spatiotemporal structure of surface waves, as well as a significant refinement of the bottom sediment transport schemes in the coastal zone. Using the example of the Anapa bay bar, it is shown that situations are possible in which the alongshore flow of bottom sediments is almost completely determined by swell waves.

The results of field and laboratory experiments make it possible to determine the directions for further research on the creation of physically based models of sediment transport by waves and wave currents.

References


  1. Ackers, P. and W.R. White, 1973: Sediment Transport: New Approach and Analysis. Journal of the Hydro. Div. ASCE, 99 (HY11).

  2. Antsyferov, S.M. and R.D. Kos'yan, 1986: Vzveshennyye nanosy v verkhney chasti shel'fa, Moscow, Nauka, 224 p.

  3. Aziz, J.J., M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, 2003: MAROS: A Decision Support System for Optimizing Monitoring Plans. Ground Water, 41(3), 355–367.

  4. Bailard, J.A., 1981: An energetic total load sediment transport model for a plane sloping beach. J. Geophys. Research, 86(C11), 10938–10954.

  5. Bijker, E.W., 1969: Littoral Drift as a Function of Waves and Current. Publication Delft Hydraulics Laboratory, Delft, The Netherlands, (58).

  6. Coastal Engineering Manual, 2002: Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, D.C. (in 6 volumes).

  7. Davies, A.G. and Z. Li, 1997: Modelling sediment transport beneath regular symmetrical and asymmetrical waves above a plane bed. Continental Shelf Research, 17(5), pp. 555.

  8. DHI Water & Environment, 2007: MIKE 21, Spectral Wave Module.

  9. Divinskiy, B.V., R.D. Kos'yan, and I. Gryune, 2014: Vliyaniye formy spektra poverkhnostnogo volneniya na dinamiku donnykh osadkov. Okeanologiya, 54(2), 149–160.

  10. Divinskiy, B.V. and R.D. Kos'yan, 2019: Vzveshivaniye donnykh osadkov v usloviyakh neregulyarnogo poverkhnostnogo volneniya. Okeanologiya, 59(4), 533–543, doi: 10.31857/S0030-1574594533-543.

  11. Divinskiy, B.V., 2003: Rezul'taty izmereniy parametrov poverkhnostnykh voln s pomoshch'yu buya v rayone g. Gelendzhika. Dinamicheskiye protsessy beregovoy zony moray, Mosow, Nauchnyy mir, 70–91.

  12. Divinsky, B.V. and R.D. Kosyan, 2019: Bottom Sediment Suspension under Irregular Surface Wave Conditions. Oceanology, 59(4), 482–490, doi: 10.1134/S0001437019040039.

  13. Divinsky, B.V. and R.D. Kosyan, 2020: Influence of the climatic variations in the wind waves parameters on the alongshore sediment transport. Oceanologia, 62(2), 190–199, doi: 10.1016/j.oceano.2019.11.002.

  14. Divinsky, B. and R. Kosyan, 2018: Parameters of wind seas and swell in the Black Sea based on numerical modeling. Oceanologia, 60, 277–287, https://doi.org/10.1016/j.oceano.2017.11.006.

  15. Divinsky, B.V. and R.D. Kosyan, 2017: Spatiotemporal variability of the Black Sea wave climate in the last 37 years. Continental Shelf Research, 136, 1–19, IF 2.369, http://dx.doi.org/10.1016/j.csr.2017.01.008.

  16. Dohmen-Janssen, C. and D. Hanes, 2005: Sheet flow and suspended sediment due to wave groups in a large wave flume. Continental Shelf Research, 25, 333–347, doi: 10.1016/j.csr.2004.10.009.

  17. Engelund, F. and J.A. Fredsøe, 1979: Sediment transport model for straight alluvial channels. Nordic Hydrology, 296–306.

  18. Engelund, F. and E.A. Hansen, 1979: Monograph on Sediment Transport in Alluvial Channels. Nordic Hydrology.

  19. Grant, W.D. and O.S. Madsen, 1982: Movable bed roughness in unsteady oscillatory flow. Journal of Geophysical Research, 87(C1), 469–481.

  20. Grüne, J., R. Kos’yan, H. Oumeraci, I. Podymov, R. Schmidt-Koppenhagen, and C.E. Vincent, 2007: Large-Scale Laboratory Modeling of Suspended Sand Concentration Fluctuations under Irregular Waves. Coastal Sediments 07, ASCE, New Orleans.

  21. Hanes, D.M. and D.A. Huntley, 1986: Continuous measurements of suspended sand concentration in a wave dominated nearshore environment. Continent. Shelf Res., 6(4), 585–596.

  22. Hasselmann, K. et al., 1973: Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP). Erganzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe, A (80), 12, Deutsches Hydrographisches Institut, Hamburg.

  23. Jonsson, J.G., 1966: On the existence of universal velocity distributions in an oscillatory, turbulent boundary layer. Report Coast. Eng. Lab/Hydraul. Lab., Tech. Univ. Denmark, 12, 2–10.

  24. Kos'yan, R.D., M.V. Krylenko, and S. Vinsent, 2009: Vysokochastotnaya izmenchivost' vertikal'nogo raspredeleniya kontsentratsii vzvesi v beregovoy zone. Materialy mezhdunarodnoy konferentsii «Litodinamika donnoy kontaktnoy zony okeana», Moscow, GEOS, 103–105, ISSN 978-5-89118-469-5.

  25. Kos'yan, R.D. and M.V. Krylenko, 2009: Kharakteristika melkomasshtabnykh turbulentnykh vikhrey, formiruyushchikhsya vo vneshney beregovoy zone. Materialy mezhdunarodnoy konferentsii «Geologiya, geografiya i ekologiya okeana», Rostov-na-Donu, YUNTS RAN, 181–183, ISSN 978-902982-44-9.

  26. Kos'yan, R.D., G. Kunts, S.Yu. Kuznetsov, N.V. Pykhov, and M.V. Krylenko, 1999: Peremezhayemost' turbulentnosti v priboynoy zone i yeye vliyaniye na vzveshivaniye peska. Okeanologiya, 39(2), 298–305.

  27. Kos'yan, R.D., I.S. Podymov, and N.V. Pykhov (Ed.), 2003: Dinamicheskiye protsessy beregovoy zony moray, Moscow, Nauchnyy mir, 326 p.

  28. Kos'yan, R.D. and N.V. Pykhov, 1991: Gidrogennoye peremeshcheniye osadkov v beregovoy zone moray, Moscow, Nauka, 280 p.

  29. Kos’yan, R., J. Grune, B. Divinskiy, and I. Podymov, 2015: Nowdays Problems of Sediment Transport Modelling in the coastal zone. Proceedings of 34th Conference on Coastal Engineering, Seoul, South Korea, 34, 19, ISSN: 2156-1028 ISBN: 978-0-9896611-2-6.

  30. Kos’yan, R., J. Grüne, B. Divinskiy, I. Podymov, C. Vincent, A. Ahmari, and H. Oumeraci, 2010: The dependence of suspended sand concentration on the degree of storm development. 32nd International Conference on Coastal Engineering ICCE2010, 30 June – 5 July 2010, Shanghai, China.

  31. Kosyan, R.D., B.V. Divinskiy, and M.V. Krylenko, 2016: Peculiarities of the suspended sediment concentration measurement in the coastal zone. International Conference on Coasts, Ports and Marine Structures (ICOPMAS). 31 Oct –2 Nov. 2016, Tehran, Iran.

  32. Kosyan, R.D., B.V. Divinskiy, V.V. Krylenko, M.V. Krylenko, S.B. Kuklev, and A.R. Kosyan, 2011: The forecast of Anapa bay-bar coast evolution and sand body thickness change. Coastal Engineering Practice – Proceedings of the 2011 Conference on Coastal Engineering Practice. San Diego, CA, 21-24.08, 20112011, 42–55, doi: 10.1061/41190(422)5.

  33. Kosyan, R.D., B.V. Divinsky, and M.V. Krylenko, 2018: Laboratory research of peculiarities of the suspended sediment concentration in the coastal zone. Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab18), Santander, Spain, May 22–26.

  34. Kosyan, R. and B. Divinsky, 2016: Variability of the suspended sediment dynamics under irregular waves. EMECS'11 SeaCoasts XXVI Joint Conference. Managing risks to coastal regions and communities in a changing world. August 22–27, 2016, St. Petersburg, Russia.

  35. Kos’yan, R.D., H. Kunz, S.Yu. Kuznetsov, N.V. Pykhov, and M.V. Krylenko, 1997: Sand Suspension and Intermittence of Turbulence in the Surf Zone. Proc. of the 25th International Conference on Coastal Engineering, “COASTAL ENGINEERING' 96”. American Society of Civil Engineering, New York, 4111–4119.

  36. Kos’yan, R., H. Kunz, S. Kuznetsov, N. Pykhov, and M. Krlenko, 1996: Intermittence of turbulence and sand suspending events during storm. Abstr. of the 25th Intern. Conf. "Coastal Engineering 96", Orlando, USA.

  37. Kos’yan, R., H. Kunz, S.Yu. Kuznetsov, N.V. Pykhov, and M.V. Krylenko, 1997: Sand suspension and intermittence of turbulence in the surf zone. Proc. of the 25 Int. Conference on Coastal Engineering, “coastal engineering”96”, American Society of Civil engineering, New York, 4111–4119.

  38. Kos'yan, R., H. Kunz, S. Kuznetsov, N. Pykhov, I. Podymov, and P. Vorobyev, 1999: Physical regularities of suspended sand concentration and transport under irregular waves based on field data. Die Küste, 64, 161–200.

  39. Kosyan, R. and M. Krylenko, 2006: Peculiarities of instantaneous vertical distribution of suspended sediment in the surf zone. Abstr. of 30th International Conference on Coastal Engineering (ICCE), San Diego, pp. 106.

  40. Kos’yan, R.D., M.V. Krylenko, and C.E. Vincent, 2007: Fluctuations of instantaneous vertical distribution of suspended sediment in the surf zone. Proc. of the 30th International Conference on Coastal Engineering (ICCE), 2524–2536.

  41. Kos’yan, R., I. Podymov, and N. Pykhov, 1999: Investigations of Suspended Sediment Dynamics in the Course of the Nearshore Experiment in the Ob Sea. MEDCOAST’99 – EMECS’99 Joint Conference, Land- Ocean Interactions: Managing Coastal Ecosystems; Antalya, Turkey.

  42. Kos’yan, R., 1985: Vertical distribution of suspended sediment concentrations seawards of the breaking zone. Coastal Engineering, 9, 171–187.

  43. Krylenko, M.V., 2008: Vliyaniye melkomasshtabnoy turbulentnosti na vertikal'noye raspredeleniye vzveshennykh nanosov v beregovoy zone. Materialy mezhdunarodnoy konferentsii «Dinamika pribrezhnoy zony besprilivnykh morey», Kaliningrad, Terra Baltika, 74–78.

  44. Krylenko, M.V., Y. Gryune, R.D. Kos'yan, and I.S. Podymov, 2012: Osobennosti vzveshivaniya peschanykh chastits pod vozdeystviyem regulyarnogo volneniya. Materialy XXIV Mezhdunarodnoy konferentsii «Morskiye berega – evolyutsiya, ekologiya, ekonomika», Krasnodar, Iz-vo «Yug», 224–228.

  45. Krylenko, M.V. and R.D. Kos'yan, 2017: Vozmozhnost' optimizatsii izmereniy kontsentratsii vzveshennykh nanosov v beregovoy zone moray. Sinergiya nauk, 16, 1108–1113, URL: http://synergy-journal.ru/archive/article1034.

  46. Krylenko, M.V., R.D. Kos'yan, V.V. Krylenko, and Ye.V. Bondareva, 2009: Vliyaniye melkomasshtabnoy turbulentnosti na raspredeleniye vzveshennykh nanosov v beregovoy zone. Vklad fundamental'nykh issledovaniy v razvitiye sovremennoy innovatsionnoy ekonomiki Krasnodarskogo kraya, sbornik tezisov, Krasnodar, 49–50.

  47. Krylenko, V.V., 2015: Dinamika morskogo berega Anapskoy peresypi. Okeanologiya, 55(5), 821–828, doi: 10.7868/S0030157415050081.

  48. Krylenko, M.V., 2008: Peculiarities of the small-scale turbulence in the coastal zone. Proc. Of the 3rd International Short Course and Workshop on APPLIED COASTAL RESEARCH, Lecce, Italy, 134–140.

  49. Kunz, H. and R. Kos’yan, 1997: German-Russian nearshore dynamics experiment on Norderney island. Proc. of the Third International Conference on the Mediterranean Coastal Environment, “MEDCOAST' 97”, Malta, 1301–1315.

  50. Kuznetsov, S.Yu. and N.V. Pykhov, 1998: Spectral Test of the Energetic Approach for Suspended sand Transport in the Surf Zone. Proceedings of the International Conference on Coastal Research in Terms of Large Scale Experiments, “Coastal Dynamics’ 97”, Plimouth, 227–234.

  51. Larson, M. and N.C. Kraus, 1989: SBEACH: numerical model for simulating storm-induced beach change. Tech. Rep. CERC-89-9. US Army Eng. Waterw. Exp. Station. Coastal Eng. Res. Center.

  52. Larson, M., L.X. Hoan, and H. Hanson, 2009: Direct formula to compute wave height and angle at incipient breaking. J. Waterway, Port, Coast, Ocean Eng., 136 (2), 119–122.

  53. Longuet-Higgins, M.S., 1970: Alongshore currents generated by obliquely incident sea waves. Jour. Geophys. Res., 75, 6788–6801.

  54. Meyer-Peter, E. and R. Müller, 1948: Formulas for Bed-Load Transport. Proceedings Second Congress IAHR, Stockholm, Sweden.

  55. Murray, R., D. Hodgson, and P. Thorne, 2012: Wave groups and sediment resuspension processes over evolving sandy bedforms. Continental Shelf Research, 46, 16–30, doi: 10.1016/j.csr.2012.02.011.

  56. Newe, J. and H. Dette, 1995: Simulation of dune and nourished berm erosion during storm surges. Int. Conf. “Coastal Dynamics’95”, Gdansk, 850–861.

  57. Nguen, Manh Hung, R.D. Kos’an, I.S. Podymov, and V.A. Sokolov, 2011: A Vietnam-Russia field survey for studying of the near shore dynamic and sediment processes at the Red river delta. In: “International cooperation on investigation and research of marine natural resource and environment”. Hanoi, Publishing house for science and technology, 152–162.

  58. Nielsen, P., 1981: Dynamics and geometry of wave‐generated ripples. Journal of geophisical research, 86(C7), 6467–6472, doi.org/10.1029/JC086iC07p06467.

  59. O’Donoghue, T., J.S. Doucette, J.J. van der Werf, and J.S. Ribberink, 2006: The dimensions of sand ripples in fullscale oscillatory flows. Coastal Engineering, 53, 997–1012.

  60. Okayasu, A. and H. Katayama, 1992: Distribution of undertow and long-wave component velocity due to random waves. 23rd Int. Conf. on Coastal Eng. Venice, 883–893.

  61. Osborn, Ph.D. and B. Greenwood, 1993: Sediment suspension under waves and currents time scales and vertical structure. Sedimentology, 40, pp. 599.

  62. Pykhov, N.V., R.D. Kos’yan, and S.Yu. Kuznetsov, 1997: Field research of time scales and mechanisms of sandy sediment suspending by irregular waves. Oceanologiya, 37(2), pp. 202.

  63. Roelvink, J.A., A.J.H.M. Reniers, and D.J.R. Walstra, 1995: Medium-term morphodynamic modelling. MAST 68-M Final Workshop, Gdansk, 7-3–7-6 pp.

  64. Roelvink, J.A. and M.J.F. Stive, 1989: Bar-generating cross-shore flow mechanisms on a beach. J. of Geophys. Res., 94(C40), 4785–4800.

  65. Soulsby, R.L., 1997: Dynamics of Marine Sands. Thomas Telford Publications, London, ISBN 07272584X.

  66. Stive, M.J.F. and H.G. Wind, 1986: Cross-shore mean flow in the surf-zone. Coastal Eng., 10, 325–340.

  67. Svendsen, I.A., H.A. Schaffer, and J. Buhr Hansen, 1987: The interaction between the undertow and the boundary layer flow on a beach. J. of Geophys. Res., 92(C 11), 11845–11856.

  68. Van Rijn, L.C., 1984: Sediment transport, part II: suspended load transport. Journal of Hydraulic Engineering, 110:1613–1641.

  69. Van Thiel de Vries, J.S.M., 2009: Dune erosion during storm surges. PhD thesis, PhD thesis, Delft, Delft Unversity of Technology.

  70. Vincent, C.E. and D. Hanes, 2002: The accumulation and decay of near-bed suspended sand concentration due to waves and wave gropes. Continental Shelf Research, 22, 1987-2000.

  71. Walton, T., 2002: Coastal Engineering Manual, Part III, Coastal Sediment Processes, Chapter III-6, Engineer Manual 1110-2-1100.. U.S. Army Corps of Engineers. Washington, DC, 72.

  72. Wang, H., G. Miao, and L.-H. Lin, 1992: A time-dependent nearshore morphological response model. 23rd Int. Conf. on Coastal Eng., Venice, 2513–2527.

  73. Wiberg, P.L. and C.K. Harris, 1994: Ripple geometry in wave-dominated environments. Journal of Geophysical Research, 99(C1), 775–789.

  74. Williams, J.J., C.P. Rose, and P.D. Thorne, 2002: Role of wave groups in resuspension of sandy sediments. Marine Geology, 183, 17–29.

  75. Zou, S., R. Dalrymple, F. Asce, and B. Rogers, 2005: Smoothed particle hydrodynamics simulation on sediment suspension under breaking waves. Ocean waves measurement and analysis, Fifth Inter. Symposium Waves-2005, Madrid, Spain, 186–192.

  76. Zyserman, J. and F. Fredsøe, 1994: Data Analysis of Bed Concentration of Suspended Sediment. . of Hydr. Eng. ASCE, 120(9).
Published
2021-04-26