GEOLOGICAL HETEROGENEITY OF A SEDIMENTARY COVER OF THE PECHORA PLATE ACCORDING TO HYDROMAGNETIC SURVEY

  • Yu. V. Brusilovsky Shirshov Institute of Oceanology, Russian Academy of Sciences
  • A. N. Ivanenko Shirshov Institute of Oceanology, Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2019.47(1).45
Keywords Pechora plate, model of a magnetoactive layer, thin deposits, magmatism, return problem, division of fields, effective magnetization

Abstract

In August–September, 2018 in the Pechora Sea during the 38th flight of NIS “Academician Nikolay Strakhov” complex geologic-geophysical researches were conducted. Magnetic survey was carried out along with seismic profiling where as the radiator of elastic fluctuations the electrospark Sparker radiator was used. The group of a sea magnetometry was faced by a problem of mapping of the top layer of a sedimentary cover, including allocation of zones of development of thin deposits, buried paleochannels, zones of jointing and geological explosive violations.
Hydromagnetic survey and interpretation of the received materials was as a result executed that allowed to estimate spectral structure of the abnormal magnetic field (AMF) and to allocate three frequency components to which there corresponds the deep range of sources of the field. Leaning on the received estimates of depths, and comparing them to the description of wells, also temporary bindings for the allocated deep ranges of sources of magnetic field were defined.
High-frequency component, there corresponds the arrangement of sources of AMF in the topmost part of a section. The top edges of sources lie in the range of depths from 35 to 70 m that possibly correspond to deposits of pleystotsenovy age. It is possible that the thin deposits created during the last Valdai freezing can be sources of these high-frequency anomalies.
The second deep range is created by sources of AMF the top edges of which are located in the range of depths of 260–510 m that possibly corresponds to stratigrafichesky range from top Yura to the lower chalk.
The third, the deep range of bedding of the top edges of sources of AMF allocated by authors is determined by the most low-frequency part of a range and according to authors reflects the late Devonian stage of activization of magmatism.

References


  1. Armishev A.M., Borisov A.V., Bro E.G., Verba M.L., Ostistyy B.K., Sorokov D.S., Ustinov N.V., and Shimarayev V.N. Geologicheskoye stroyeniye Zapadno-Arkticheskoy kontinentalnoy okrainy po dannym geofizicheskikh nablyudeniy i glubokogo bureniya. Geologiya morey i okeanov (doklady sovetskikh geologov). Leningrad: VNII Okeangeologiya, 1988а, pp. 195–204.

  2. Armishev A.M., Bro E.G., and Desyatkov V.M. Rezultaty ispytaniya parametricheskikh skvazhin na ostrovakh. Neftegazonosnost Barentsevo-Karskogo shelfa (po materialam bureniya na more i ostrovakh), Leningrad: PGO Sevmorgeologiya, 1988б, pp. 25–41.

  3. Borovinskikh A.P. Geodinamika i neftegazonosnost (na primere Timano-Pechorskogo NGB i smezhnogo arkticheskogo shelfa). – V kn.: Aktualnyye nauchno-tekhnicheskiye problemy razvitiya geologo-geofizicheskikh i poiskovykh rabot na neft i gaz v respublike Komi, Kn. 3, Ukhta: KRO RAyeN, 2003, pp. 8–40.

  4. Cooper G.R.J. Forward modelling of magnetic data. Computers & Geosciences, 1997, Vol. 23(10), pp. 1125–1129.

  5. Dedeyev V.A., Aminov L.Z., Malyshev N.A., Pimenov B.A., and Knyazhin S.L. Riftogenez i neftegazonosnost severo-vostoka Evropeyskoy platformy. – V kn.: Riftogenez i neftegazonosnost, Moskva: Nauka, 1993, pp. 51–59.

  6. Ivanenko A.N., Brusilovskij Yu.V., Filin A.M., and Shishkina N.A. Sovremennye tekhnologii obrabotki i interpretacii magnitnyh dannyh pri poiske nefti i gaza na akvatoriyah. Geofizika, 2012, No. 3, pp. 60–70.

  7. Otchet 38-go reysa NIS “Akademik Nikolay Strakhov”. Federalnoye Gosudarstvennoye Byudzhetnoye Uchrezhdeniye Nauki Institut Okeanologii im. P.P. Shirshova Rossiyskoy Akademii Nauk. Moscow: Shirshov Institut of Oceanology, 2018, 69 p.

  8. Otchet FGUNPP «Sevmorgeo». Glubinnoye stroyeniye Barentsevo-Karskoy plity na osnove rezultatov kompleksnykh geofizicheskikh (seysmorazvedochnykh MOV-OGT. KMPV-GSZ. gravimetricheskikh. magnitometricheskikh) issledovaniy na opornykh profilyakh. Kniga 4 Geologicheskoye stroyeniye osadochnogo chekhla v polose profilya 3-AR, Prilozheniye 4, Litologo-stratigraficheskiy razrez skvazhiny Pomorskaya-1, SanktPeterburg: 2006. pp. 90–96.

  9. Otchet FGUNPP «Sevmorgeo» Glubinnoye stroyeniye Barentsevo-Karskoy plity na osnove rezultatov kompleksnykh geofizicheskikh (seysmorazvedochnykh MOV-OGT. KMPV-GSZ. gravimetricheskikh. magnitometricheskikh) issledovaniy na opornykh profilyakh. Kniga 4 Geologicheskoye stroyeniye osadochnogo chekhla v polose profilya 3-AR Prilozheniye 6, Litologo-stratigraficheskiy razrez skvazhiny Pakhachenskaya-1, Sankt-Peterburg: 2006. pp. 90–96.

  10. Pavlidis Yu.A., Nikiforov S.L., Ogorodov S.A., and Tarasov G.A. Pecherskoye more: Proshloye. nastoyashcheye i budushcheye. Okeanologiya, 2007, Vol. 47, No. 6, pp. 927–939.

  11. Shakirov A.EH. Magnitometricheskie issledovaniya lednikov YUzhnyj i Severnyj EHnilchek (Inyl’chek) v rajone ozera Mercbahera. Lyod i sneg, 2015, No. 2, pp. 42–52.

  12. Shkarubo S.I. and Shipilov E.V. Tektonika Zapadno-Arkticheskoy platform. Razvedka i okhrana nedr, 2007, No. 9, pp. 32–47.

  13. Verba M.L., Pavlenkin A.D., and Tulina Yu.V. Glubinnaya geologicheskaya struktura shelfa Barentseva morya (po dannym GSZ-82). Neodnorodnosti glubinnogo stroyeniya zemnoy kory okeanov, Leningrad: PGO Sevmorgeologiya, 1986, pp. 75–88.
Published
2019-05-29
Section
Marine geology, geophysics and geochemistry