Modelling of suspended matter distribution in marine coastal areas. 1. Description of the SM-model

  • K. A. Podgornyi Atlantic Research Institute of Fisheries and Oceanography
  • A. V. Leonov Институт океанологии им. П.П. Ширшова РАН
Ключевые слова: equations of the theory of «the shallow water», the system of advection and turbulent diffusion equations, initial and boundary conditions


A methodology is considered for developing a mathematical model to study the distribution of suspended matter concrentrations in coastal marine areas. This model assesses the consequences of dredging (namely the disturbance of the natural state of marine environment for bioresources), it reproduces the formation of suspended matter and its subsequent transport in the aquatic environment in shallow sea bays and offshore water areas. This problem is solved in two basic stages: at the first stage – the system of equations of hydrodynamics (the equations of the theory of "shallow water") is numerically integrated and the values of the mean components of the flow velocity are determined; and at the second stage – the system of turbulent diffusion equations is integrated, the processes of sedimentation of suspended matter, resuspension of bottom sediments, arrival of suspended matter from distributed point sources, their redistribution in the aquatic environment and the accumulation of residual quantities on the bottom are taken into account.

Биография автора

K. A. Podgornyi, Atlantic Research Institute of Fisheries and Oceanography


  1. Afanasyev S.V., Ryzhin S.V. Numerical simulation of horizontal turbulent diffusion in a shallow lake // Vod. resources. 1986. Vol. 13, No. 1. Pp. 87–94.

  2. Amoundry L. A review on coastal sediment transport modeling // Proudman Oceanographic Laboratory. Internal document No. 189. 2008. 44 p.

  3. Arkhipov B.V., Koterov V.N, Kocherova A.S. et al., Calculation of the distribution of suspended solids in the coastal region of the sea, Vod. resources. 2004. V. 31. №1. P. 31–39.

  4. Ayukai T., Wolanski E. Importance of biologically mediated removal of fine sediments from the Fly River plume, Papua New Guinea // Estuarine Coastal Shelf Sci. 1997. Vol. 44. P. 629–639.

  5. Baklanovskaya V.F., Pal'tsev B.V., Chechel I.I. On boundary–value problems for the system of Saint-Venant equations in the plane, Zh. Calculated. Math. and Math. Fiz. 1979. Vol. 19. № 3. P. 708–725. (In Russian).

  6. Cebeci T. Turbulence models and their application: Effective numerical methods with computer programs. Long Beach, California: Horizons Publishing Inc., 2004. 118 p.

  7. Chao X., Jia Y., Shields Jr. F.D., et al. Three-dimensional modeling of cohesive sediment
    transport and wind wave impact in a shallow oxbow lake // Adv. Water Res. 2008. Vol. 31. P. 1004–1014.

  8. Chubarenko I., Tchepikova I. Modeling of man-made contribution to salinity increase into the Vistula Lagoon (Baltic Sea) // Ecol. Modeling. 2001. V. 138. P. 87–100.

  9. Davies, A.M., Lawrence J. Examining the influence of wind and wind wave turbulence on tidal currents, using a three-dimensional hydrodynamic model including wave-current interaction. J. Phys. Oceanogr. 1994. Vol. 24. P. 2441–2460.

  10. Einstein H.A., Krone R.B. Experiments to determine modes of cohesive sediment transport in salt water // J. Geophys. Res. 1962. Vol. 67. P. 1451–146.

  11. Eisma D. Flocculation and de-flocculation of suspended matter in estuaries // Neth. J. Sea Res. 1986. Vol. 20 (2/3). P. 183–199.

  12. Fahmy O., Fassieh K.M., Zaki M.A. A numerical model of the wave-induced currents in the turbulent coastal zone // ISRN Civil Engineering. 2013. Vol. 2013. P. 1–7.

  13. Fugate D., Friedrichs C.T. Controls on suspended aggregate size in partially mixed estuaries // Estuarine Coastal Shelf Sci. 2003. Vol. 58. P. 389–404.

  14. Glenn S.M., Grant W.D. A suspended sediment stratification correction for combined waves and current flows // J. Geophys. Res. 1987. Vol. 92 (C8). P. 8244–8264.

  15. Graf W.H. Hydraulics of sediment transport. New York: McGraw-Hill, 1971. 513 p.

  16. Grant W.D., Madsen O.S. Combined wave and current interaction with a rough bottom // J. Geophys. Res. 1979. Vol. 84 (C4). P. 1797–1808.

  17. Hamilton D.P., Mitchell S.F. An empirical model for sediment resuspension in shallow lakes // Hydrobiologia. 1996. Vol. 317. P. 209–220.

  18. Hipsey M.R., Romero J.R., Antenucci J.P., Hamilton D. Computational aquatic ecosystem dynamics model: CAEDYM, v.2.3, Science manual. University of Western Australia: Centre for water research, 2006. 102 p.

  19. Jönsson A. Model studies of surface waves and sediment resuspension in the Baltic sea. Linköping, Sweden: Linköping University, 2005. 55 p.

  20. Jonsson I.G. Wave boundary layers and friction factors // Proceedings of the 10th International conference on coastal engineering. Tokyo, Japan, ASCE, 1966. P. 127–148.

  21. Kester, D. R. Comparison of recent seawater freezing point data // J. Geophys. Res. 1974. Vol. 79. P. 4555–4556.

  22. Klevanny K.A., Gubareva V.P., Mostamandy M.S.W., Ozerova L.B. Water level forecasts for the Eastern Gulf of Finland // Bull. of the Maritime Institute, Gdansk. 2001. V. 28, №2. P. 71–87.

  23. Klevanny K.A., Smirnova E.V. Use of the CARDINAL software for solving hydraulic problems // Zhurn. University of Water Communications. 2009. Issue. 1. P. 153–162. (In Russian).

  24. Kranenburg C. The fractal structure of cohesive sediment aggregates // Estuarine Coastal Shelf Sci. 1994. Vol. 39. P. 451–460.

  25. Lai Y.G. Two-dimensional depth-averaged flow modelling with an unstructured hybrid mesh // J. Hydraul. Eng. 2010. Vol. 136. P. 12–23.

  26. Leonov A.V. Modeling of natural processes on the basis of the imitational hydroecological model of transformation of compounds C, N, P, Si. Yuzhno-Sakhalinsk: Sakh State University, 2008. 168 p. (In Russian).

  27. Levich V.G. Physicochemical hydrodynamics. Englewood Cliffs: Prentice Hall, 1962. 700 p.

  28. Lisitsyn A.P. Marginal filter of the oceans // Oceanology. 1994. Vol. 34. №5. P. 735–747. (In Russian).

  29. Lisitsyn A.P., Barenblatt G.I. Hydrodynamics and sedimentation. M .: Nauka, 1983.232 p. (In Russian).

  30. Lou J., Schwab D.J., Beletsky D., Hawley N. A model of sediment resuspension and transport dynamics in southern Lake Michigan // J. Geophys. Res. 2000. Vol. 105. P. 6591–6610.

  31. Luettich R.A., Harleman D.R.F., Somlyody L. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events // Limnol. Oceanogr. 1990. Vol. 35. P. 1050–1067.

  32. Maciejewska A., Pempkowiak J. DOC and POC in the water column of the southern Baltic. Part I. Evaluation of factors influencing sources, distribution and concentration dynamics of organic matter // Oceanologia. 2014. Vol. 56. P. 523–548.

  33. Maciejewska A., Pempkowiak J. DOC and POC in the water column of the southern Baltic. Part II – Evaluation of factors affecting organic matter concentrations using multivariate statistical methods // Oceanologia. 2015. Vol. 57. P. 168–176.

  34. Manning A.J. The development of new algorithms to parameterize the mass settling flux of flocculated estuarine sediments. Defra Project FD1905. Report TR 145. Rev. 2.0. HR Wallingford, 2004. 48 p.

  35. Marchuk G.I. Splitting methods. Moscow: Nauka, 1988. 264 p. (In Russian).

  36. Marchuk G.I., Dymnikov V.P., Zalesny V.B. Mathematical models in geophysical hydrodynamics and numerical methods for their implementation. L .: Gidrometeoizdat, 1987. 296 p. (In Russian).

  37. Matishov G.G., Makarevich P.R., Jenyuk S.L. Marine oil and gas development and rational nature management on the shelf. Rostov-on-Don: YNC Publishing House, 2009. 500 p. (In Russian).

  38. Mehta A.J., Partheniades E. An investigation of the depositional properties of flocculated fine sediment // J. Hydraul. Res. 1975. Vol. 13. P. 361–381.

  39. Methodical guidelines for calculating the distribution of turbidity zones during dredging and dumping in the Navy. Moscow: MO RF, 2003. 80 p. (In Russian).

  40. MIKE 21 & MIKE 3 Flow Model FM. Hydrodynamic and Transport Module. Scientific Documentation. Hørsholm, Denmark: DHI, 2012. 50 p.

  41. Mikkelsen O.A., Pejrup M. In situ particle size spectra and density of particle aggregates in a dredging plume // Mar. Geol. 2000. Vol. 170. P. 443–459.

  42. Milligan T.G., Hill P.S. A laboratory assessment of the relative importance of turbulence, particle composition, and concentration in limiting maximal floc size and settling behavior // J. Sea Res. 1998. Vol. 39. P. 227–241.

  43. Molchanov M., Eremina T.R., Neelov I.A. Modeling of suspended matter transport in the Neva Bay and the Eastern part of the Gulf of Finland // Proceedings of the 2nd International Conference (school) on Dynamics of Coastal Zone of Non-Tidal Seas. Baltiysk (Kaliningrad Oblast), 26–30 June 2010 / Ed. by B. Chubarenko. Kaliningrad: Terra Baltica, 2010. P. 207–211.

  44. Neumann G., Pierson W.J. Principles of Physical Oceanography. Prentice-Hall, Englewood Cliffs, NJ, 1966. 545 p.

  45. Neumeier U., Ferrarin C., Amos C.L., Umgiesser G., Li M.Z. SEDTRANS05: An improved sediment-transport model for continental shelves and coastal waters with a new algorithm or cohesive sediments // Computers and Geosciences. 2008. Vol. 34. P. 1223–1242.

  46. Nielsen P. Coastal bottom boundary layers and sediment transport. Advanced series on ocean engineering, 4. Singapore: World Scientific, 1992. 324 p.

  47. Partheniades E. Erosion and deposition of cohesive soils // J. Hydraul. Div. ASCE. 1965. Vol. 91 (HY1). P. 105–139.

  48. Podgorny K.A. Mathematical modeling of freshwater ecosystems of non-stratified reservoirs (algorithms and numerical methods). Rybinsk: Publishing house of the Rybinsk Printing House, 2003. 328 p. (In Russian).

  49. Podgorny K.A., Leonov A.V. Use of a spatially inhomogeneous simulation model for studying the transformation processes of nitrogen, phosphorus and oxygen dynamics in the ecosystem of the Neva Bay of the Gulf of Finland: 1. Description of the model. Water Resources. 2013a. Vol. 40. № 2. P. 170–180.

  50. Podgorny K.A., Leonov A.V. Use of a spatially inhomogeneous simulation model for studying the transformation processes of nitrogen, phosphorus and oxygen dynamics in the ecosystem of the Neva Bay of the Gulf of Finland: 2. Input data for calculations, simulation results and their analysis. // Water Resources. 2013b. Vol. 40. № 3. P. 254–270.

  51. Raudkivi A.J. Loose boundary hydraulics. Taylor & Francis, London, 1998. 538 p.

  52. Reid R.C., Prausnitz J.M., Poling B.E. The Properties of Gases and Liquids. 4th ed. New York: McGraw-Hill Book Company, 1987. 741 p.

  53. Rodi W. Turbulence models and their application in hydraulics: a state of the art review. Delft, the Netherland: IAHR Publication, 1980. 116 p.

  54. Rukhovets L.A. Mathematical modeling of water exchange and distribution of impurities in the Neva Bay // Meteorol. and hydrology. 1982. №7. P. 78–87. (In Russian).

  55. Ryabchenko V.A., Rumyantsev V.A., Konoplev V.N. et al. Evaluation of water quality changes in the Neva Bay after the commissioning of the South-Western treatment facilities of St. Petersburg (according to mathematical modeling), Izv. Russian Geographical Society. 2006. T. 138. Vol. 5. P. 48–57. (In Russian).

  56. Ryanzhin S.V., Terzhevik A.Yu., Afanasyev S.V. Hydrodynamic regime and conditions of accumulation of bottom sediments // Preservation of a natural ecosystem of a reservoir in the urbanized landscape. - L .: Science, 1984. S. 83–92. (In Russian).

  57. Samarskii A.A, Vabishchevich P.N. Additive schemes for problems of mathematical physics. Moscow: Nauka, 1999a. 320 p. (In Russian).

  58. Samarskii A.A., Vabishchevich P.N. Numerical methods for solving convection-diffusion problems. Moscow: Editorial URSS, 1999b. 248 p. (In Russian).

  59. Schlichting H., Gersten K. Boundary-layer theory. Springer, Berlin, 2000. 811 p.

  60. Shore protection manual. U.S. Army engineer waterways experimental station. Coastal engineering research centre. V. I, 4th edition. PO Box 631, Vicksburg, Mississippi 39180, 1984.

  61. Signell R.P., Beardsley R.C., Graber H.C., Capotondi A. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments // J. Geophys. Res. 1990. Vol. 95. P. 9671–9678.

  62. Smagorinsky J. General circulation experiments with the primitive equations. I. Basic experiment // Monthly Weather Review. 1963. Vol. 91. P. 99–164.

  63. Smith S.J., Friedrichs C.T. Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume // Cont. Shelf Res. 2011. Vol. 31. P. 550–563.

  64. Soulsby R.L. Dynamics of marine sands: a manual for practical applications. HR Wallingford, Thomas Telford Publications, 1997. 253 p.

  65. Stanev E.V., Dobrynin M., Pleskachevsky A., et al. Bed shear stress in the southern North Sea as
    an important driver for suspended sediment dynamics // Ocean Dynamics. 2009. Vol. 59. P. 183–194.

  66. Teeter A.M., Johnson B.H., Berger C. et al. Hydrodynamic and sediment transport modeling with emphasis on shallow-water, vegetated area (lakes, reservoirs, estuaries and lagoons)// Hydrobiologia. 2001. Vol. 444. P. 1–23.

  67. Ten Brinke W.B.M. Settling velocities of mud aggregates in the Oosterschelde tidal basin (The Netherlands), determined by a submersible video system // Estuarine Coastal Shelf Sci.1994. Vol. 39. P. 549–564.

  68. Van der Lee W.T.B. Temporal variation of floc size and settling velocity in the Dollard estuary //Cont. Shelf Res. 2000. Vol. 20. P. 1495–1511.

  69. Van Leussen W. Estuarine macroflocs and their role in fine-grained sediment transport. PhD Thesis, University of Utrecht. 1994. 488 p.

  70. Winterwerp J.C. A simple model for turbulence induced flocculation of cohesive sediment // J. Hydraul. Res. 1998. Vol. 36. P. 309–326.

  71. Winterwerp J.C. On the flocculation and settling velocity of estuarine mud // Cont. Shelf Res. 2002. Vol. 22. P. 1339–1360.

  72. Ziegler C.K., Nisbet B.S. Long-term simulation of fine-grained sediment transport in large reservoir // J. Hydraul. Eng. 1995. Vol. 121. P. 773–781.
Морская геология, геофизика и геохимия