SOFTWARE PACKAGE FOR ARCHIVED SONAR DATA ANALYSIS

  • O. V. Lakhno Institute of Physics and Technology (National Research University); Shirshov Institute of Oceanology, Russian Academy of Sciences
  • I. M. Anisimov Shirshov Institute of Oceanology, Russian Academy of Sciences
  • V. O. Muravya Institute of Physics and Technology (National Research University); Shirshov Institute of Oceanology, Russian Academy of Sciences
  • A. A. Pronin Shirshov Institute of Oceanology, Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2025.53(3).13
关键词 side-scan sonar research, sonar data archiving, conversion, data processing, side-scan mosaic

摘要

This article is devoted to the process of processing archival sonar data for seabed research, which has been conducted at the Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) for over 50 years. The paper provides a detailed description of the converter algorithm that allows for the transformation of data from the archival format used by IO RAS, WINRASTR, into the modern standard format XTF. This conversion is necessary for the unification of accumulated data formats, which ensures more efficient processing and analysis. The article also discusses the algorithm for constructing sonar mosaics, which are one of the most convenient ways to represent large amount of seabed survey data. This work aims to enhance the quality of seabed research and optimize the handling of archival data.

参考


  1. Anisimov, I. M., A. K. Zalota, A. V. Lesin, and V. O. Muravya, 2023: Aspects of the Towed Underwater Vehicle “Videomodule”: Utilization for Surveying Underwater Objects and Benthic Fauna. Oceanology, 63 (5), 840–852, https://doi.org/10.31857/S0030157423050027.

  2. Cervenka, P. and C. de Moustier, 1993: Sidescan sonar image processing techniques. IEEE Journal of Oceanic Engineering, 18 (2), 108–122, https://doi.org/10.1109/48.219531.

  3. Chesapeake Technology – Makers of SonarWiz [Electronic resource], https://chesapeaketech.com/.(date of access: 06.04.2025).

  4. DeepVision. Sonar Systems [Electronic resource], https://deepvision.se/.(date of access: 06.04.2025).

  5. Firsov, Yu. G., 2010: Osnovy gidroakustiki i ispol’zovaniya gidrograficheskikh sonarov (Fundamentals of Hydroacoustics and the Use of Hydrographic Sonars). Nestor-Istoriya-e izd., Saint Petersburg, p. 348.

  6. HYPACK Hydrographic Surveying Packages. Xylem US [Electronic resource], https://www.xylem.com/en-us/brands/hypack/?redirect=hypack.(date of access: 06.04.2025).

  7. Kumar, M., 1988: World geodetic system 1984: A modern and accurate global reference frame. Marine Geodesy, 12 (2), 117–126, https://doi.org/10.1080/15210608809379580.

  8. Moga Software [Electronic resource], https://www.mogasw.com/seaview/mosaic/.(date of access: 12.04.2025).

  9. MB-System. MBARI [Electronic resource], https://www.mbari.org/technology/mb-system/.(date of access: 06 April 2025).

  10. Pyproj3.7 documentation [Electronic resource], https://pyproj4.github.io/pyproj/stable/.(date of access: 11.04.2025).

  11. Rimsky-Korsakov, N. A., S. N. Tronza, and I. M. Anisimov, 2019: Development of the deep-water sonar technologies for bottom relief and underwater objects research. International journal of applied and fundamental research, 9, 85–90, https://doi.org/10.17513/mjpfi.12856.

  12. Rimsky-Korsakov, N. A., S. N. Tronza, and I. M. Anisimov, 2020: Oceanological bottom studies sonar data archiving. International journal of applied and fundamental research, 10, 47–53, https://doi.org/10.17513/mjpfi.13137.

  13. Rimsky-Korsakov, N. A., 2017: Technology structure of bottom and submarine objects sonar research. Journal of Oceanological Research, 45 (1), 187–195, https://doi.org/10.29006/1564-2291.JOR-2017.45(1).14.

  14. Rimsky-Korsakov, N. A., S. A. Sviridov, Yu. S Russak., A. B. Kostin, and N. F. Tikhonova, 2023: Development and operation of deep-sea oceanographic complex as part of towed vehicles “Zvuk”. Journal of Oceanological Research, 51 (1), 133–161, https://doi.org/10.29006/1564-2291.JOR-2023.51(1).7.

  15. Rimsky-Korsakov, N. A., N. Ya. Knivel, M. V. Flint, A. Yu. Kazennov, O. E. Kiknadze, I. M. Anisimov, and N. F. Tikhonova, 2024: Potential environmental threat objects investigation at the Novaya Zemlya depression. Journal of Oceanological Research, 52 (3), 133–148, https://doi.org/10.29006/1564-2291.JOR-2024.52(3).8.

  16. Ritter, N. and M. Ruth, 1997: The GeoTiff data interchange standard for raster geographic images. International Journal of Remote Sensing, 18 (7), 1637–1647, https://doi.org/10.1080/014311697218340.

  17. Russak, Yu. S. and N. A. Rimsky-Korsakov, 1998: Tsifrovoy modul’ vvoda-vyvoda gidrolokatsionnoy informatsii RAD98 (Digital Input-Output Module for Hydroacoustic Information RAD98), Moscow, p. 114.

  18. Sivintsev, Yu. V., S. M. Vakulovskiy, and A. P. Vasilyev, 2005: Tekhnogennye radionuklidy v moryakh, omyvayushchikh Rossiyu: Radioekologicheskie posledstviya udaleniya radioaktivnykh otkhodov v arkticheskie i dal’nevostochnye morya (“Belaya kniga–2000”) (Man-made radionuclides in the seas surrounding Russia: radioecological consequences of radioactive waste disposal in the Arctic and Far Eastern seas (“White Book–2000”)), Izdatel’stvo AT-e, Moscow, p. 624.

  19. SonarTRX Introduction. Leraand Engineering Inc. [Electronic resource], https://www.sonartrx.com/.(date of access: 06.04.2025).

  20. XTF file format information. Exail [Electronic resource], https://www.exail.com/resources/knowledge-center/xtf-file-format-information.(date of access: 12.04.2025).

  21. Yurkinа, M. I. and L. I. Serebryakova, 2001: Deystvuyushchie Sistemy Koordinat V Rossii (Existing Coordinate Systems in Russia). Geodesy and Aerophotosurveying, 3, 40–53.

  22. Zapotyl’ko, V. S., A. P. Popov, S. A. Sviridov and N. A Rimsky-Korsakov, 2024: ODBASE – a system for storing and displaying marine research data of the institute of oceanology of the russian academy of sciences. Journal of Oceanic Engineering, 52 (2), 206–233, https://doi.org/10.29006/1564-2291.JOR-2024.52(2).11.

已出版
2025-09-21