AUTOMATIC IDENTIFICATION OF THE NOVAYA ZEMLYA BORA WIND

  • V. S. Koshkina Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow Institute of Physics and Technology National Research University)
  • A. V. Gavrikov Shirshov Institute of Oceanology, Russian Academy of Sciences
  • N. D. Tilinina Shirshov Institute of Oceanology, Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2024.52(4).5
Keywords Novaya Zemlya bora wind, downslope windstorm, mesoscale processes, automatic anomaly identification, climatology, Arctic, numerical modeling, WRF

Abstract

The paper examines a type of downslope windstorm – the Novaya Zemlya bora. This is a insufficiently studied mesoscale phenomenon characterized by the presence of high wind speeds on the western slope of the archipelago, threatening the safety of port buildings and maritime navigation. The paper proposes an approach for automatic identification of bora, which will allow to make a climatic picture of this phenomenon and to identify its characteristic features. The developed approach was applied to long-term (2015–2023) high-resolution numerical simulation data obtained using the WRF atmospheric model, and to lower-resolution data – atmospheric reanalysis ERA5. Over a 9-year period, about 220 bora events were analyzed, and this was done not only for the entire archipelago (which is typical for most studies), but also for individual regions of Novaya Zemlya. It was shown that the qualitative climatic characteristics of bora do not depend on spatial resolution, which potentially allows us to apply the developed method to identify the bora on longer time periods, for example, the entire period covered by the ERA5 reanalysis data. However, on a quantitative level, high resolution showed a greater intensity and duration of the phenomenon, as expected.

References


  1. Ărthun, M., L. H. Smedsrud, C. W. Böning, and J. Richter, 2011: Dense water formation and circulation in the Barents Sea. Deep Sea Research. Part I: Oceanographic Research Papers, 58 (8), 801–817.

  2. Bedanokov, M. K., A. A. Yamshchikov, and P. P. Polezhaev, 2018: Obzor rabot, posvyashchennykh modelirovaniyu yavleniy obtekaniya nerovnostey poverkhnosti zemli i katastroficheskikh vetrov tipa bory (Review of works on modeling phenomena of flow around surface irregularities and catastrophic bora winds). Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Geografiya i geoekologiya, 3, 15–39.

  3. Dmitriev, A. A., 2024: Pevekskiy yuzhak i bor’ba s nim (Pevek windstorm and how to combat it). Litres.

  4. Efimov, V. V., 2018: Novozemel’skaya bora: mekhanizmy formirovaniya i sezonnaya izmenchivost’ (Novaya Zemlya bora: formation mechanisms and seasonal variability), pp. 183.

  5. Efimov, V. V. and O. I. Komarovskaya, 2018: Novozemel’skaya bora: analiz i chislennoye modelirovanie (Novaya Zemlya bora: analysis and numerical modeling). Izvestiya Rossiyskoy akademii nauk. Fizika atmosfery i okeana, 54 (1), 83–96.

  6. Efimov, V. V. and O. I. Komarovskaya, 2018: Sezonnaya izmenchivost’ i gidrodinamicheskiye rezhimy novozemel’skoy bory (Seasonal variability and hydrodynamic regimes of the Novaya Zemlya bora). Izvestiya Rossiyskoy akademii nauk. Fizika atmosfery i okeana, 54 (6), 684–698.

  7. Gavrikov, A. V. and A. Yu. Ivanov, 2015: Anomal’no sil’naya bora na Chernom more: nablyudenie iz kosmosa i chislennoye modelirovanie (Abnormally strong bora on the Black Sea: satellite observations and numerical modeling). Izvestiya Rossiyskoy akademii nauk. Fizika atmosfery i okeana, 51 (5), 615–615.

  8. Gohm, A., G. J. Mayr, A. Fix, and A. Gohm, 2008: On the onset of bora and the formation of rotors and jumps near a mountain gap. Quarterly Journal of the Royal Meteorological Society, 134 (630), 21–46.

  9. Grisogono, B. and D. Belušić, 2009: A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A: Dynamic Meteorology and Oceanography, 61 (1), 1–16.

  10. Hersbach, H., B. Bell, P. Berrisford, and D. Dee, 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999–2049, https://doi.org/10.1002/qj.3803,. eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3803. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803.

  11. Hong, S. and J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6), http://www.mmm.ucar.edu/wrf/users/docs/WSM6-hong_and_lim_JKMS.pdf.

  12. Iacono, M. J., E. J. Mlawer, S. A. Clough, and J. S. Delamere, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research Atmospheres, 113 (13), 2–9, ISSN: 01480227, https://doi.org/10.1029/2008JD009944.

  13. Klemp, J. B. and D. R. Durran, 1987: Numerical modelling of bora winds. Meteorology and Atmospheric Physics, 36 (1–4), 215–227.

  14. Klemp, J. B. and D. R. Lilly, 1975: The dynamics of wave-induced downslope winds. Journal of Atmospheric Sciences, 32 (2), 320–339.

  15. Lin, Y. L. and T. A. Wang, 1996: Flow regimes and transient dynamics of two-dimensional stratified flow over an isolated mountain ridge. Journal of the Atmospheric Sciences, 53 (1), 139–158.

  16. Markowski, P. and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Royal Meteorological Society, 327.

  17. Moore, G. W. K., 2013: The Novaya Zemlya Bora and its impact on Barents Sea air-sea interaction. Geophysical Research Letters, 40 (13), 3462–3467.

  18. National Centers for Environmental Prediction et al., 2015: NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. Boulder CO, https://doi.org/10.5065/D65D8PWK.

  19. Olson, J. B., J. S. Kenyon, W. K. Tao, and J. Dudhia, 2019: A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF–ARW, https://doi.org/10.25923/N9WM-BE49. https://repository.library.noaa.gov/view/noaa/19837.(accessed on 30.04.2024).

  20. Peltier, W. R. and T. L. Clark, 1983: Nonlinear mountain waves in two and three spatial dimensions. Quarterly Journal of the Royal Meteorological Society, 109 (461), 527–548.

  21. Shestakova, A. A., 2016: Novozemel’skaya bora: podvetrennye kharakteristiki i struktura natekaushchego potoka (Novaya Zemlya bora: lee characteristics and structure of the incoming flow). Arktika i Antarktika, 2, 86–98.

  22. Shestakova, A. A. and K. B. Moiseenko, 2018: Gidravlicheskiye rezhimy obtekaniya gor pri sil’nykh podvetrennykh buryakh: novorossiyskaya i novozemel’skaya bora i pevekskiy yuzhak (Hydraulic regimes of mountain flow during strong lee storms: Novorossiysk and Novaya Zemlya bora and Pevek windstorm). Izvestiya Rossiyskoy akademii nauk. Fizika atmosfery i okeana, 54 (4), 405–416.

  23. Shestakova, A. A., P. A. Toropov, and T. A. Matveeva, 2020: Climatology of extreme downslope windstorms in the Russian Arctic. Weather and Climate Extremes, 28, p. 100256.

  24. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Huang, W. Wang, and J. G. Powers, 2019: A description of the advanced research WRF version 4. NCAR Tech. Note NCAR/TN-556+STR, 145.

  25. Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, 21, Elsevier, 87–230.

Published
2024-12-29
Section
Ocean physics and climate

Most read articles by the same author(s)