ОБЛАСТЬ ПРИМЕНИМОСТИ ДАННЫХ СПУТНИКОВОЙ АЛЬТИМЕТРИИ ДЛЯ ВАЛИДАЦИИ АЛГОРИТМОВ ОЦЕНКИ ВЫСОТЫ ВЕТРОВОГО ВОЛНЕНИЯ
Аннотация
Спутниковая альтиметрия – один из важнейших источников информации о состоянии морской поверхности. В настоящей работе проводится оценка радиуса области квазиоднородности поля ветрового волнения по данным контактных и альтиметрических измерений. Контактные данные, полученные с помощью дрейфующих волномерных буев Spotter и радиолокационной системы SeaVision, были собраны в ходе 5 морских экспедиций. Были обработаны данные уровня L3 десяти альтиметрических миссий, предоставляемые CMEMS, а также реанализа ERA5 по скорости ветра. Результатом работы является оценка максимального радиуса круга с центром в точке спутникового измерения, данные внутри которого можно использовать для валидации других методов оценки значительной высоты волнения, а также методика уточнения этой оценки при учете неоднородности поля ветра.
Литература
- Лопатухин Л. И. Ветровое волнение: Учеб. пособие. 2-е изд., доп. СПб.: ВВМ, 2012. 165с.
- Нестеров Е. С. Ветровое волнение в арктических морях (обзор) // Гидрометеорологические исследования и прогнозы. 2020. Т. 3 (377). С. 19–41.
- Abdalla S., Janssen P., Bidlot J.-R Altimeter near real time wind and wave products: Random error estimation // Mar. Geod. 2011. Vol. 34. P. 393–406. https://doi.org/10.1080/01490419.2011.585113.
- Abdalla S., Kolahchi A. A., Ablain M., Bhowmick S. A., Alou-Font E., Amarouche L., Andersen O. B., Antich H., Aouf L., et al. Altimetry for the future: Building on 25 years of progress // Adv. Space Res. 2021. Vol. 68. P. 319–363. https://doi.org/10.1016/j.asr.2021.01.022.
- Babanin A. V. On a wave-induced turbulence and a wave-mixed upper ocean layer // Geophysical Research Letters. 2006. Vol. 33 (20). https://doi.org/10.1029/2006GL027308.
- Babanin A., Zieger S., Ribal A. Satellite observations of waves in the Arctic Ocean // Proceedings of the 22nd IAHR International Symposium on Ice, Singapoure, 2014. https://doi.org/10.3850/978-981-09-0750-1.1153.
- Blomquist B. W., Brumer S. E., Fairall C. W., Huebert B. J., Zappa C. J., Brooks I. M., Yang M., Bariteau L., Prytherch J., Hare J. E., Czerski H., Matei A., Pascal R. W. Wind speed and sea state dependencies of air-sea gas transfer: Results from the high wind speed gas exchange study (HiWinGS) // Journal of Geophysical Research: Oceans. 2017. Vol. 122. P. 8034–8062. https://doi.org/10.1002/2017JC013181.
- Buckingham C. E., Lucas N. S., Belcher S. E., Rippeth T. P., Grant A. L. M., Sommer J. Le, Ajayi A. O., Naveira Garabato A. C. The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer // Journal of Advances in Modeling Earth Systems. 2022. Vol. 11. P. 4066–4094. https://doi.org/10.1029/2019MS001801.
- Campos R. M. Analysis of spatial and temporal criteria for altimeter collocation of significant wave height and wind speed data in deep waters // Remote Sens. 2023. Vol. 15. P. 2203. https://doi.org/10.3390/rs15082203.
- Charles E., Husson R., Philip A., Zunino P. Synthesis Quality Overview Document for WAVE Thematic Assembly Centre Product WAVE_GLO_PHY_SWH_L3_NRT_014_001. 2023. Iss. 3.4. https://doi.org/10.48670/moi-00179.
- Dodet G., Piolle J.-F., Quilfen Y., Abdalla S., Accensi M., Ardhuin F., Ash E., Bidlo J.-R., Gommenginger C., Marechal G., Passaro M., Quartly G., Stopa J., Timmermans B., Young I., Cipollini P., Donlon C. The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations // Earth Syst. Sci. Data. 2020. Vol. 12. P. 1929–1951. https://doi.org/10.5194/essd-12-1929-2020.
- Dodet G., Abdalla S., Alday M., Accensi M., Bidlot J., Ardhuin F. Error characterization of significant wave heights in multidecadal satellite altimeter product, model hindcast, and in situ measurements using the triple collocation technique // Journal of Atmospheric and Oceanic Technology. 2022. Vol. 39. P. 887–901. https://doi.org/10.1175/JTECH-D-21-0179.1.
- Ezhova E. A., Gavrikov A. V., Sharmar V. D., Tilinina N. D., Suslov A. I., Koshkina V. S., Krinitskiy M. A., Gladyshev V. S., Borisov M. A. Obtaining Wind Waves Parameters Using Ship Radar // Oceanology. 2023. Vol. 63 (Suppl. 1). P. 42–53. https://doi.org/10.1134/S0001437023070032.
- Gulev S. K., Hasse L. North Atlantic wind waves and wind stress fields from voluntary observing ship data // Journal of Physical Oceanography. 1998. Vol. 28. Iss. 6. P. 1107–1130. https://doi.org/10.1175/1520-0485(1998)028%3C1107:NAWWAW%3E2.0.CO;2.
- Hersbach H., Bell B., Berrisfold P., Hirahara S., et al. The ERA5 global reanalysis // Quarterly Journal of the Royal Meteorological Society. 2020. Vol. 146. P. 1999–2049. https://doi.org/10.1002/qj.3803.
- Ivonin D. V., Gavrikov A. V., Sharmar V. D., Salavatova L. I., Tilinina N. D., Gulev S. K. Monitoring the sea surface state in the North Atlantic based on ship navigation facilities // Oceanology. 2021. Vol. 61. P. 305–307. https://doi.org/10.1134/S000143702103005X.
- Krinitskiy M. A., Golikov V. A., Anikin N. N., Suslov A. I., Gavrikov A. V., Tilinina N. D. Estimating significant wave height from X-band navigation radar using convolutional neural networks // Moscow Univ. Phys. 2023. Vol. 78 (Suppl. 1). P. 128–137. https://doi.org/10.3103/S0027134923070159.
- Kudryavtseva N. A., Soomere T. Validation of the multi-mission altimeter data for the Baltic Sea region // Estonian Journal of Earth Sciences. 2016. Vol. 65. P. 161–175. https://doi.org/10.3176/earth.2016.13.
- Liu S., Miaomiao S., Chen S., Fu X., Zheng S., Hu W., Gao S., Cheng K., Zhang S., Nez M., Li W. An intelligent modeling framework to optimize the spatial layout of ocean moored buoy observing networks // Frontiers in Marine Science. 2023. Vol. 10. https://doi.org/10.3389/fmars.2023.1134418.
- Monaldo F. Expected differences between buoy and radar altimeter estimates of wind speed and significant wave height and their implications on buoy-altimeter comparisons // J. of Geophysical Research: Oceans. 1988. Vol. C3. P. 2285–2302. https://doi.org/10.1029/JC093iC03p02285.
- Nieto-Borge J. C., Reichert K., Dittmer J., Rosenthal W. WaMoS II: A wave and current monitoring system // Proc. of the COST 714 conference, Paris. 1998.
- Nieto-Borge J. C., Reichert K., Dittmer J. Use of nautical radar as a wave monitoring instrument // Coastal Engineering. 1999. Vol. 37. P. 331–342. https://doi.org/10.1016/S0378-3839(99)00032-0.
- Passaro M., Hemer M. A., Quartly G. D., Schwatke C., Dettmering D., Seitz F. Global coastal attenuation of wind-waves observed with radar altimetry // Nat. Commun. 2021. Vol. 12. P. 3812. https://doi.org/10.1038/s41467-021-23982-4.
- Raghukumar K., Chang G., Spada F., Jones C., Janssen T., Gans A. Performance characteristics of “Spotter”, a newly developed real-time wave measurement buoy // Journal of Atmospheric and Oceanic Technology. 2019. Vol. 36. P. 1127–1141. https://doi.org/10.1175/JTECH-D-18-0151.1.
- Rezvov V. Y., Krinitskiy M. A., Golikov V. A., Tilinina N. D. Improvement of the AI-Based Estimation of Significant Wave Height Based on Preliminary Training on Synthetic X-Band Radar Sea Clutter Images. Moscow Univ. Phys. 2023. Vol. 78 (Suppl. 1). P. 188–201. https://doi.org/10.3103/S0027134923070275.
- Ribal A., Young I. R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations // Sci. data. 2019. Vol. 6. P. 77. https://doi.org/10.1038/s41597-019-0083-9.
- Taburet N., Husson R., Charles E., Jettou G., Philip A., Philipps S., Ghantous M., Kocha C. Quality Information Document for WAVE Thematic Assembly Centre Product WAVE_GLO_PHY_SWH_L3_NRT_014_001. 2023. https://doi.org/10.48670/moi-00179.
- Tilinina N., Ivonin D., Gavrikov A., Sharmar V., Gulev S., Suslov A., Fadeev V., Trofimov B., Bargman S., Salavatova L., Koshkina V., Shishkova P., Ezhova E., Krinitskiy M., Razorenova O., Koltermann K. P., Tereschenkov V., Sokov A. Wind waves in the North Atlantic from ship navigational radar: SeaVision development and its validation with the Spotter wave buoy and WaveWatch III // Earth Syst. Sci. Data. 2022. Vol. 14. P. 3615–3633. https://doi.org/10.5194/essd-14-3615-2022.
- WaMoS II System overview [official site of Wamos II Ocean State Monitoring System] // https://rutter.ca/wamos/.(visited on 19/03/2023).
- Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms // IEEE Transactions on Audio and Electroacoustic. 1967. Vol. 15. Iss. 2. https://doi.org/10.1109/TAU.1967.1161901.
- Young I. R., Rosenthal W., Ziemer F. A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents // Journal of Geophysical Research Atmospheres. 1985. Vol. 90. P. 1049–1059. https://doi.org/10.1029/JC090iC01p01049.
- Young I. R., Zieger S., Babanin A. V. Global trends in wind speed and wave height // Science. 2011. Vol. 332. Iss. 6028. P. 451–455. https://doi.org/10.1126/science.1197219.
- Zhang Z., Li X. Global ship accidents and ocean swell-related sea states // Nat. Hazards and Earth Syst. Sci. 2017. Vol. 17. P. 2041–2051. https://doi.org/10.5194/nhess-17-2041-2017.
- Zieger S., Vinoth J., Young I. R. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years // J. of Atmospheric and Oceanic Technology. 2009. Vol. 26. P. 2549–2564. https://doi.org/10.1175/2009JTECHA1303.1.
- Ziemer F., Rosenthal W. Measurements of two-dimensional wave energy spectra during SAXON-FPN’90. 1993 // Proceedings of OCEANS ’93. Victoria, BC, Canada. Vol. 2. P. 326–331. https://doi.org/10.1109/OCEANS.1993.326106.
Передача авторских прав происходит на основании лицензионного договора между Автором и Федеральным государственным бюджетным учреждением науки Институт океанологии им. П.П. Ширшова Российской академии наук (ИО РАН)