THE MODERN TRENDS IN THE DEVELOPMENT OF EQUIPMENT AND TECHNOLOGY EXPLORATION AND MINING OF MANGANESE NODULES AND COBALT-RICH FERROMANGANESE CRUSTS IN THE WORLD OCEAN

  • V. M. Yubko State Scientific Center JSC “Yuzhmorgeology”
  • I. N. Ponomareva State Scientific Center JSC “Yuzhmorgeology”
  • T. I. Lygina State Scientific Center JSC “Yuzhmorgeology”
DOI: 10.29006/1564-2291.JOR-2023.51(4).8
Keywords: World Ocean, manganese nodules, cobalt-reach ferromanganese crusts, deposits, geological exploration, mining, underwater equipment

Abstract

The article provides an overview of domestic and foreign achievements in the field of development of technologies for exploration and production of manganese nodules and cobaltrich crusts on the bottom of the World Ocean. The problems that are solved through the use of modern deep-sea technical complexes, including autonomous uninhabited, remote-controlled and manned ones, are characterized. A clear tendency has been noted to introduce new types of technical means with a high level of robotization into the practice of geological exploration. Specific examples of technical developments in this area are given. It is noted that the main trend in the development of technology for exploration of deep-sea deposits of ocean ores and their extraction is the equipping of underwater uninhabited and manned underwater vehicles with a set of equipment that will allow solving a wide range of problems associated with these processes.

References


  1. Avtonomnyye neobitayemyye podvodnyye apparaty Kitaya (Autonomous uninhabited underwater vehicles of China). http://oosif.ru/anpa-kitaya.

  2. Armada launches to sea. 09.05.2022, [Электронный ресурс], https://oceaninfinity.com/armada-launches-to-sea/.

  3. Assessing the Impacts of Nodule Mining on the Deep-Sea Environment. [Электронный ресурс], https://www.geomar.de/en/news/article/assessing-the-impacts-of-nodule-mining-on-the-deep-sea-environment#gallery-1.

  4. Atmanand, M. A. and S. Kathiroli, The Status of India’s Mining Programme. Proceedings of the Workshop jointly organized by the International Seabead Authority and the Ministry of Earth Sciences, Government of India, National Institute of Ocean Technology, Chennai, India, 18–22 February 2008, 130–142, https://www.isa.org.jm/files/documents/EN/Pubs/Chennai.pdf.

  5. Chinese deep-sea mining system. 2021, [Электронный ресурс], https://im-mining.com/2021/01/25/american-bureau-shipping-gives-design-approval-chinese-deep-sea-mining-system/.

  6. CRD 100 Seafloor Drill. [Электронный ресурс], https://static1.squarespace.com/static/591b4a93725e254bd9bea803/t/59ea72db1f318d9008cd7ba9/
    1508537068056/CRD100+Datasheet+%28New%29.pdf
    .

  7. Cui, W. C., 2013: Development of the Jiaolong deep manned submersible. Marine Technology Society Journal, 47 (3), 37–54, https://doi.org/10.4031/MTSJ.47.3. https://www.researchgate.net/publication/272204383_Development_of_the_
    Jiaolong_Deep_Manned_Submersible
    .

  8. De Bruyne, K. GSR’s PROCAT-Project: Technical derisking of deep sea mining equipment. 29.10.2018, http://www.lbeg.niedersachsen.de/download/137704.

  9. Du, D., S. Yan, G. Yang, F. Shi, Z. Zhu, O. Song, F. Yang, Y. Cui, and X. Shi, 2020: Depositional pattern s constrained by slope topography changes on seamounts. Sci Rep., Nov. 25, 10 (1), 20534, https://doi.org/10.1038/s41598-020-77573-2, [Электронный ресурс], https://www.nature.com/articles/s41598-020-77573-2.pdf.

  10. Edgetech FS 2200-M ГЛБО. [Электронный ресурс], http://svarog.ru/wp-content/uploads/2017/01/EdgeTech-2200-m_brochure.pdf.

  11. First Scientific Expedition and Back Home. http://english.cas.cn/newsroom/archive/news_archive/nu2013/201502/t20150216_140565.shtml.

  12. Gazis, I. Z., T. Schoening, E. Alevizos, and J. Greinert, 2018: Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning. Biogeosciences, 15, 7347–7377, [Электронный ресурс], https://bg.copernicus.org/articles/15/7347/2018/bg-15-7347-2018.pdf.

  13. GIKO – glubokovodnaya dobycha poleznykh iskopayemykh na okeanicheskikh shel’fakh ne narushayushchimi ekosistemu metodami (GIKO – deep-sea mining of minerals on ocean shelves using methods that do not disturb the ecosystem). 2023, https://ocean-minerals.ru/page/dobycha-morskih-mineralov.php; https://ocean-minerals.ru/page/roi-glubokovodnyh-robotov.php.

  14. GSR presents Patania. https://www.deme-gsr.com/news/article/gsr-presents-patania-i-to-the-flemish-minister-of-innovation/.

  15. Haixing 6000 ROV. https://steemit.com/botbod/@infocomm/kitayskiy-podvodnyiy-robot-morskaya-zvezda-ustanovil-rekord-rabotyi-na-glubine.

  16. Hein, J. R., 2004: Cobalt-rich ferromanganese crusts: Global distribution, composition, origin and research activities. In: Minerals Other than Polymetallic Nodules of the International Seabed Area. International Seabed Authority: Kingston, Jamaica, 5, 188–256, https://www.researchgate.net/publication/264382918.

  17. Hong, F., H. Feng, M. Huang, B. Wang, and J. Xia, 2019: China’s First Demonstration of Cobalt-rich Manganese Crust Thickness Measurement in the Western Pacific with a Parametric Acoustic Probe. Sensors, 19, 4300, , [Электронный ресурс], https://www.mdpi.com/1424-8220/19/19/4300/htm.

  18. Hong, S. A., 2008: Way to Acomplish the Mining Technology for Polimetallic Nodules. Proceedings of the Workshop jointly organized by the International Seabead Authority and the Ministry of Earth Sciences, Government of India, National Institute of Ocean Technology, Chennai, India, 18–22 February, 185–201, [Электронный ресурс], https://www.isa.org.jm/files/documents/EN/Pubs/Chennai.pdf.

  19. HUGIN Autonomous Underwater Vehicles. [Электронный ресурс], https://www.kongsberg.com/ru/maritime/products/marine-robotics/autonomous-underwater-vehicles/AUV-hugin/.

  20. iXblue – поставщик технологического оборудования Ulyx AUV. [Электронный ресурс], https://www.ixblue.com/news/ifremer-chooses-ixblues-technology-equip-its-new-6000-meter-auv.

  21. JOGMEC Conducts World’s First Successful Excavation of Cobalt-Rich Seabed in the Deep Ocean. 2020, [Электронный ресурс], http://www.jogmec.go.jp/english/news/release/content/300368332.pdf.

  22. KAIKO 7000 ROV_JAMSTEC. [Электронный ресурс], https://www.jamstec.go.jp/e/about/equipment/ships/kaiko7000.html.

  23. Klein SSS_UUV-3500-Deep.pdf. [Электронный ресурс], Режим доступа: hhttp://kleinmarinesystems.com/wp-content/uploads/MIND_Klein_UUV_3500-Deep.pdf.

  24. Klein Specification_UUV-3500-Deep. [Электронный ресурс], http://www.teledynemarine.com/klein-side-scan-sonar-module.

  25. Kompleks mnogotselevogo glubokovodnogo TPA rabochego klassa ROSUB-6000 (Complex of multi-purpose deep-sea ROV working class ROSUB-6000). http://www.edboe.ru/products/rosub.htm.

  26. Kongsberg AUV Systems. [Электронный ресурс], https://www.kongsberg.com/globalassets/maritime/km-products/product-documents/naval-auv-product-range.

  27. Konoplin, A. Yu., V. A. Denisov, T. N. Dautova, A. L. Kuznetsov, and A. V. Moskovtseva, 2020: Tekhnologiya ispol’zovaniya TNPA dlya vypolneniya glubokovodnykh issledovatel’skikh operatsiy (Technology for using ROVs to perform deep-sea research operations). Trudy 31 Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Ekstremal’naya robototekhnika”, Saint Petersburg, 246–251, https://www.elibrary.ru/download/elibrary_44406807_42148415.pdf.

  28. Li, S., J. Liu, H. Xu, H. Zhao, and Y. Wang, 2018: Research status of autonomous underwater vehicles in China. SCIENTIA SINICA Informationis, 48 (9), 1152–1164, , [Электронный ресурс], https://www.sciengine.com/publisher/scp/journal/SSI/48/9/10.1360/N112017-00264?slug=fulltext.

  29. Linke, P. and K. Lackschewitz, 2016: Autonomous Underwater Vehicle ABYSS. Journal of large-scale research facilities JLSRF, 2, 79, [Электронный ресурс], .

  30. Marsh, L., V. A. I. Huvenne, & D. O. B. Jones, 2018: Geomorphological evidence of large vertebrates interacting with the seafloor at abyssal depths in a region designated for deep-sea mining. Royal Society Open Science, 5 (8), [180286], https://doi.org/10.1098/rsos.180286, [Электронный ресурс], https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180286.

  31. Martínez, Arbizu, Pedro, and Matthias Haeckel, 2015: RV SONNE Fahrtbericht. Cruise Report SO239: EcoResponse assessing the ecology, connectivity and resilience of polymetallic nodule field systems, Balboa (Panama) – Manzanillo (Mexico) 11.03.2015–30.04.2015. GEOMAR Report (N. Ser.), 25, 204, Режим доступа: https://www.portalforschungsschiffe.de/lw_resource/datapool/_items/item_146/
    so239_fahrtbericht.pdf
    .

  32. Mayer, L., M. J akobsson, G. Allen, B. Dorschel, R. Falconer, V. Ferrini, G. Lamarche, H. Snaith, and P. Weatherall, 2018: The Nippon Foundation-GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences, 8 (2), 63, https://doi.org/10.3390/geosciences8020063; https://www.mdpi.com/2076-3263/8/2/63/html.

  33. McPhail, S., M. Furlong, and M. Pebody, 2010: Lowaltitude terrain following and collision avoidance. https://doi.org/10.1130/G39091.1, [Электронный ресурс], https://journals.sagepub.com/doi/abs/10.1243/14750902jeme196.

  34. Neettiyath, U., B. Thornton, M. Sangekar, Y. Nishida, K. Ishii, A. Bodenmann, T. Sato, T. Ura, and A. Akira Asada, 2021: Deep-Sea Robotic Survey and Data Processing Methods for Regio­nal-Scale Estimation of Manganese Crust Distribution. IEEE Journal of Oceanic Engineering, 46 (1), 102–114, https://doi.org/10.1109/JOE.2020.2978967, [Электронный ресурс], https://ieeexplore.ieee.org/document/9094038.

  35. Ning, Y., 2008: Research and Development of Polymetallic Nodule Mining Technology in China. Nodules. Proceedings of the Workshop jointly organized by the International SeabeadAuthority and the Ministry of Earth Sciences, Government of India, National Institute of Ocean Technology, Chennai, India, 18–22 February, 214–226, https://www.isa.org.jm/files/documents/EN/Pubs/Chennai.pdf.

  36. NT10-11 R/V Natsushima cruise report, 25th June – 7th July, 2010, #5 Takuyo Seamount. http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/NT10-11_all.pdf.

  37. Ocean Infinity’s Armada To Aid Ambitious Seabed Mapping Project /Industry Europe, 2020.02.13, https://industryeurope.com/sectors/transportation/ocean-infinitys-armada-to-aid-ambitious-seabed-mapping-project/.

  38. Ocean Infinity to Expand Armada Fleet with ‘World’s Largest’ Robotic Vessels / Offshore Ingineer, 2020.11.23, [Электронный ресурс], https://www.oedigital.com/news/483415-ocean-infinity-to-expand-armada-fleet-with-world-s-largest-robotic-vessels.

  39. Patania II successfully reconnected, 29.04.2021, [Электронный ресурс], https://www.deme-gsr.com/news/article/deep-seabed-mining-robot-patania-ii-successfully-reconnected-mission-continues.

  40. Patent № 2788227 RF. Kompleks dlya dobychi rassredotochennykh po morskomu dnu poleznykh iskopayemykh (Complex for the extraction of minerals dispersed along the seabed). Yungmeyster D. A., Shpenst V. A., Grigorchuk A. V., Isayev A. I., Smolenskiy M. P. Zayavka No. 2022123385 ot 01.09.2022; opubl. 17.01.2023. Byulleten’ No. 2.

  41. Patent 203596 Ros. Federatsiya: MPK E21C 50/00 (2006.01) E02F 3/413 (2006.01) Ustroystvo dlya sbora kobal’tomargantsevykh korok so dna morey (Device for collecting cobalt-manganese crusts from the bottom of the seas). Yungmeyster D. A., Korolov R. I., Serzhan S. L., Urazbakhtin R. Zayavitel’ i patentoobladatel’ FGBOU VO “Sankt-Peterburgskiy gornyj universitet”. Zayavka No. 2021103823 ot 16.02.2021; opubl. 13.04.2021, Byul. No. 11.

  42. Podvodnaya robototekhnika (Underwater robotics). http://www.imtp.febras.ru/podvodnaya-robototexnika.html?start=13.

  43. Ren, Z., F. Zhou, H. Zhu, P. Zhang, J. Chen, P. Zhou, L. Tian, C. Liu, and X. Zhang, 2020: The Research on the Mobile Drilling Rig for Deep Seabed Shallow Strata. Preprints, 2020120345 (https://doi.org/10.20944/preprints202012.0345.v1), [Электронный ресурс], https://www.preprints.org/manuscript/202012.0345/v1.

  44. Report from a Workshop “Requirements for Robotic Underwater Drills in U.S. Marine Geologic Research”, 3–4 November 2000, Texas A&M University College Station, TX, http://www.odplegacy.org/pdf/admin/workshops/2000_11_robotic_drills.pdf.

  45. ROSUB 6000 ROV_NIOT. https://www.niot.res.in/niot1/dst_intro.php.

  46. ROV KIEL 6000. https://wikichi.ru/wiki/ROV_KIEL_6000.

  47. Rumson, A. Mapping the Deep Ocean with Multiple AUVs. Hydro international, 2018.04.21, [Электронный ресурс], https://www.hydro-international.com/content/article/mapping-the-deep-ocean-with-multiple-auvs.

  48. SAMS-150 SSS – iXBlue. https://www.ixblue.com/products/sams-series.

  49. Sentry AUV. [Электронный ресурс], https://www.whoi.edu/what-we-do/explore/underwater-vehicles/sentry/.

  50. Simeoni, P., J. Sarrazin, H. Nouze, P. M. Sarradin, H. Ondreas, C. Scalabrin, and J. M. Sinquin, 2007: Victor 6000: New high resolution tools for deep-sea research. Oceans 2007 – Europe, 1–3, IEEE, New York, 133–138, [Электронный ресурс], http://www.ifremer.fr/momarsat2010/biblio/Simeoni_2007_publication-3596.pdf.

  51. Smith, S., 2021: Update on the Patania II Trial and Monitoring Plans. https://miningimpact.geomar.de/documents/1082101/1433168/Smith_StakeholderID_2021.pdf/
    392bba75-469e-41ea-af34-3f41ad1fa021
    .

  52. SPC-EU EDF10 Deep Sea Minerals (DSM) Project. 2012. Information Brochure 12. Republic of the Marshall Islands Deep-sea Minerals Potential, http://www.google.ru/url?sa=t&rct=j&q=spc-eu%20edf10%20brochure%2012&source=web&cd=1&sqi=2&ved=0CEsQFjAA&url
    =http%3A%2F%2Fict.sopac.org%2Flibrary%2Fdownload%2Findex%2F540%3Ffile%3DPR98.pdf
    &ei=P1z-T5aECcj74QSJh-GOBw&usg=AFQjCNF8-LioNyd8Zeh3YpxEL5oYOJFzkg&cad=rjt
    .

  53. Successful trial of seabed polymetallic nodule collector suffers temporary stranding of robot on ocean floor. https://www.greencarcongress.com/2021/04/20210429-get.html.

  54. Sudarikov, S. M., D. A. Yungmeyster, R. I. Korolov, and V. A. Petrov, 2022: O vozmozhnosti umen’sheniya tekhnogennoy nagruzki na pridonnye biotsenozy pri dobyche tverdykh poleznykh iskopayemykh s ispol’zovaniyem tekhnicheskikh sredstv razlichnoy modifikatsii (On the possibility of reducing the technogenic load on bottom biocenoses during the extraction of solid minerals using technical means of various modifications). Zapiski Gornogo instituta, 253, 82–96, https://doi.org/10.31897/PMI.2022.14.

  55. Tekhnologicheskiy kompleks “Abissal’-3” dlya morskikh glubokovodnykh geologorazvedochnykh rabot (Technological complex “Abyssal-3” for offshore deep-sea geological exploration: Pat. 106965 Ross. Federation: pat. 106965 Ros. Federatsiya: МPК G01V 11/00(2006.01) G05D 27/00(2006.01). Tarasenko A. A., Logoyda I. R., Amelin V. V., Musatova M. M., Kotov I. N., Gubanov Yu. N. Rodichev A. P.; applicant and patent holder Russian Federation, on behalf of which the state customer acts – Federal Agency for Subsoil Use, No. 2011101171/28, application. 01/13/2011; publ. 07/27/2011.

  56. Tilot, V., R. Ormond, J. Moreno Navas and T. S. Catalá, 2018: The Benthic Megafaunal Assem­blages of the CCZ (Eastern Pacific) and an Approach to their Management in the Face of Threate­ned Anthropogenic Impacts. Front. Mar. Sci., 5, 7, https://doi.org/10.3389/fmars.2018.00007, [Электронный ресурс], https://www.researchgate.net/publication/323285078_The_Benthic_Megafaunal_Assemblages_of
    _the_CCZ_Eastern_Pacific_and_an_Approach_to_their_Management_in_the_Face_of
    _Threatened_Anthropogenic_Impacts
    .

  57. Tsune, A. and M. Okazaki, 2015: Current Situation of Manganese Nodule Exploration in Japanese License Area. Journal of MMIJ, 131 (12), 602–609, https://doi.org/10.2473/journalofmmij.131.602. [Электронный ресурс], https://www.jstage.jst.go.jp/article/journalofmmij/131/12/131_602/_pdf/-char/ja.

  58. Qianlong. No. 1, https://www.globalsecurity.org/military/world/china/qianlong-1.htm.

  59. William, K., 2018: MTS manned underwater vehicles 2017–2018 global industry overview. Marine Technology Society Journal, 52 (5), 125–151, [Электронный ресурс], https://static1.squarespace.com/static/54deab4ce4b00617870d18ad/t/
    5b27ffaf8a922da8d4679d74/1529348080566/2017-2018+MUV+Global+Overview+
    (Hydrospace+5-17-18).pdf
    .

  60. Yungmeyster, D. A., A. I. Isayev, R. I. Korolov, F. A. Yefimov, and M. P. Smolenskiy, 2023: Analiz parametrov mashin kompleksa dlya dobychi rassredotochennykh po morskomu dnu poleznykh iskopayemykh (Analysis of machine parameters of a complex for the extraction of minerals dispersed along the seabed). Sbornik tezisov 10-y Mezhdunarodnoy konferentsii “Poleznyye iskopayemyye Mirovogo okeana”, 20–22 iyunya 2023 goda, Saint Petersburg: VNIIOkeangeologiya, 133–136.

  61. Yungmeyster, D. A. Obosnovaniye tipov glubokovodnoy tekhniki dlya dobychi morskikh zhelezomargantsevykh konkretsiy (Justification of the types of deep-sea equipment for the extraction of marine ferromanganese nodules), Eds. D. A. Yungmeyster, S. M. Sudarikov, K. A. Kireyev. Zapiski Gornogo instituta, 2019, 235, 88–95, https://doi.org/10.31897/PMI.2019.1.88.
Published
2023-12-29
Section
Marine geology, geophysics and geochemistry