SINKING PATCHES OF SALT WATER ON A SLOPE OF BOTTOM SURROUNDED BY FRESH WATER: DYNAMICS AND STRUCTURAL FEATURES OF DENSITY FRONT PROPAGATION UP THE SLOPE

  • A. E. Kupriyanova Immanuel Kant Baltic Federal University; Shirshov Institute of Oceanology, Russian Academy of Sciences
  • V. A. Gritsenko Shirshov Institute of Oceanology, Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2022.50(2).5
Keywords negative buoyancy, seasonal convection, coastal waters, sea surface cooling, laboratory experiment, along-slope current, numerical model, along-slope water dynamics

Abstract

The study of the dynamics of two small volumes of water with negative buoyancy (patches of salt water), imitated a sinking of dense water into an underlying water, was carried out. These volumes usually appear in the process of surface water cooling during seasonal convection in the coastal zone of the sea. The main tools of investigation were laboratory and numerical experiments. The main stages of motion of patches were identified: sinking, contact, and spreading along a bottom slope. The process of interaction of the water patches during their movement up the bottom slope was detailed in laboratory experiments. Patches of salt water retained unmixed long time, that confirm the laminar character of the appearing flows. Distributions of tracers obtained in the calculations was analyzed with the aim to identify the characteristic stages of the flow of patches up the slope. Three stages were suggested: initial contact, diving, wrapping and breaking. For the first time dense water flow up the slope, which occur as a result of sinking of small volumes of salt water, was described. The results allow us to notice the intensification of mixing of water dense than underlying waters in the process of surface water cooling in coastal zone of the sea.

References


  1. Amen, R. and T. Maxworthy, 1980: The gravitational collapse of a mixed region in to a linearly stratified fluid. J. Fluid Mech., 96 (1), 65–80.

  2. Barenblatt, G. I., 1978: Dinamika turbulentnykh pyaten i intruzii v ustoychivo stratifitsirovannoy zhidkosti. Izvestiya AN SSSR, Seriya Fizika i Atmosfera okeana, 14 (2), 195–206.

  3. Bowden, K., 1988: Fizicheskaya okeanografiya pribrezhnyh vod (Physical Oceanography of Coastal Waters). Moscow, Mir, 324 p.

  4. Bune, A. V., A. I. Ginzburg, V. I. Polezhaev, and K. N. Fedorov, 1985: Chislennoe i laboratornoe modelirovanie razvitiya konvektsii v okhlazhdayushchemsya s poverkhnosti sloye vody (Numerical and laboratory modeling of the development of convection in a layer of water cooling from the surface). Izvestya AN SSSR, Seriya Fizika i Atmosfera okeana, 21 (9), 956–963.

  5. Chubarenko, I. P., 2010: Gorizontal’naya konvektsiya nad podvodnymi sklonami (Horizontal convection over submarine slopes). Kaliningrad, Terra Baltika, 256 p.

  6. Chubarenko, I. P., 2010: Gorizontal’nyy konvektivnyy vodoobmen nad podvodnym sklonom: mekhanizm formirovaniya i analiz razvitiya (Horizontal convective water exchange over the underwater slope: formation mechanism and development analysis). Okeanology, 50 (2), 184–193.

  7. Fedorov, K. N. and A. I. Ginzburg, 1988: Pripoverkhnostnyy sloy okeana (The surface layer of the ocean). Leningrad, Gidrometeizdat, 303 p.

  8. Fer, I., U. Lemmin, and S. A. Thorpe, 2002: Observations of mixing near the sides of a deep lake in winter. Limnol. Oceanogr., 47 (2), 535–544.

  9. Fernandez, R. L. and J. Imberger, 2008: Relative Buoyancy Dominates Thermal-Like Flow Interaction along an Incline. J. Hydraulic Engineering, 134 (5), 636–643.

  10. Flow Visualization. Techniques and Examples (Second Edition). Eds. Smits, A. J. and T. T. Lim. 2012. Imperial College Press, 427 p.

  11. Geologiya i geomorfologiya Baltiyskogo morya. Svodnaya ob”yasnitel’naya zapiska k geologicheskim kartam masshtaba 1:500000, pod redaktsiyey A. A. Grigyalisa (Geology and geomorphology of the Baltic Sea. Summary explanatory note to geological maps at a scale of 1:500 000): 1991. Leningrad, Nedra LO, 420 p.

  12. Gidrometeorologiya i gidrokhimiya morey SSSR, pod redaktsiyey Terziyeva, F. S., V. A. Rozhkova and A. I. Smirnovoy (Hydrometeorology and hydrochemistry of the seas of the USSR): 1992. Saint Petersburg, Gidrometeizdat, 3 (1), 450 p.

  13. Gidrometeorologiya i gidrokhimiya morey SSSR, pod redaktsiyey Terziyeva, F. S., V. A. Rozhkova, Ye. Ya. Rimsha and I. S. Shpayer (Hydrometeorological conditions of the shelf zone of the seas of the USSR): 1994. Saint Petersburg, Gidrometeizdat, 3 (2), 435 p.

  14. Ginzburg, A. I. and K. N. Fedorov, 1978: Okhlazhdeniye vody s poverkhnosti pri svobodnoy i vynuzhdennoy konvektsii (Cooling of water from the surface under free and forced convection). Izvestiya AN SSSR. Seriya Fizika atmosfery i okeana, 14 (1), 79–87.

  15. Gritsenko, V. A. and I. P. Chubarenko, 2010: Ob osobennostyakh struktury frontal’noy zony pri-donnykh gravitatsionnykh techeniy (On the structural features of the frontal zone of near-bottom gravity currents). Okeanology, 50 (1), 26–32.

  16. Gudelis, V. K. and V. M. Litvin, 1976: Geomorfologiya dna (Bottom geomorphology). Geologiya Baltiyskogo morya, Vil’nyus, Mokslas, 25–34.

  17. Kao, T. W. and H. P. Pao, 1980: Wake collapse in the thermocline and internal solitary waves. J. Fluid Mech., 97 (1), 115–129.

  18. Kupriyanova, A. E. and V. A. Gritsenko, 2021: Laboratory and Numerical Study of the Peculiarities of Sea Surface Cooling in Coastal Waters. Izv. Atmos. Ocean. Phys., 57, 425–434, https://doi.org/10.1134/S0001433821040186.

  19. Maxworthy, T., 1997: Convection Into Domains With Open Boundaries. Annu. Rev. Fluid. Mech., 29, 327–371.

  20. Plaksina, Yu. Yu., A. V. Uvarov, N. A. Vinnichenko, and V. B. Lapshin, 2012: Experimental investigation of near-surface small-scale structures at water-air interface: Background Oriented Schlieren and thermal imaging of water surface. Russian Journal of Earth Sciences, 12 (4), ES4002, https://doi.org/10.2205/2012ES000517.

  21. Rouch, P., 1980: Vychislitelʹnaya gidrodinamika (Computational hydrodynamics). Moscow, Mir, 618 p.

  22. Samolyubov, B. I., 1977: Pridonnyye stratifitsirovannyye techeniya (Bottom stratified currents). Moscow, Nauchnyy mir, 463 p.

  23. Turner, J. S., 1973: Buoyancy Effects in Fluids. New York, Cambridge Univ. Press, 367 p.

  24. Volkova, A. A. and V. A. Gritsenko, 2019: Osobennosti tsirkulyatsii, voznikayushchey pri pogruzhenii s poverkhnosti konechnogo ob’yema vody s otritsatel’noy plavuchest’yu (Peculiarities of the circulation that occurs when diving from the surface of a finite volume of water with negative buoyancy). Fundamental’naya i prikladnaya gidrofizika, 12 (3), 26–35.

  25. Wu, J., 1969: Mixed region collapse with internal ware generation in a density stratified medium. J. Fluid Mech., 35 (3), 531–544.

  26. Zatsepin, A. G., K. N. Fedorov, S. N. Voropayev, and A. M. Pavlov, 1978: Eksperimental’noye issledovaniye rastekaniya peremeshannogo pyatna v stratifitsirovannoy zhidkosti. Izvestiya AN SSSR, Seriya Fizika atmosfery i okeana, 14 (2), 234–237.

  27. Zatsepin, A. G., V. A. Gritsenko, V. V. Kremenetsky, S. G. Poyarkov, and O. Yu. Stroganov, 2005: Laboratornoye i chislennoye issledovaniye protsessa rasprostraneniya plotnostnykh techeniy po sklonu dna (Laboratory and numerical study of gravity currents over a sloping bottom). Okeanology, 45 (1), 5–15.
Published
2022-08-29
Section
Ocean physics and climate