COMPARISON OF TWO DATA ASSIMILATION METHODS USED TO ACCOUNT FOR OPEN BOUNDARIES IN SEA AREA HYDROTHERMODYNAMICS MODELING
Abstract
The problems of modeling hydrothermodynamics of particular sea and coastal areas are of current interest, since the results of this modeling are often used in many applications. One of the methods allowing to take into account open boundaries and bring the simulation results closer to real data is the variational assimilation of observational data. In this paper the following approach is considered: it is supposed that there are observational data at a certain moment in time; the problem is considered as an inverse problem, in which the functions of fluxes across the open boundary are treated as additional unknowns. Comparison of methods for reconstructing unknown functions in boundary conditions at an open boundary using sea level and velocity observational data in a number of numerical experiments for a region of a simple shape is carried out.
References
- Agoshkov, V.I., 2005: Inverse problems of the mathematical theory of tides: boundary-function problem. Russ. J. Numer. Anal. Math. Model, 20(1), 1–18, https://doi.org/10.1515/1569398053270813.
- Agoshkov, V.I., 2016: Metody optimal’nogo upravleniya i sopryazhennyh uravnenij v zadachah matematicheskoj fiziki. Moscow, INM RAS, 244 p.
- Agoshkov, V.I., 2016: Metody resheniya obratnyh zadach i zadach variacionnoj assimilyacii dannyh nablyudenij v problemah krupnomasshtabnoj dinamiki okeanov i morej. Moscow, INM RAS, 192 p.
- Agoshkov, V.I., 2017: Statement and study of some inverse problems in modelling of hydrophysical fields for water areas with ‘liquid’ boundaries. Russ. J. Numer. Anal. Math. Model, 32(2), 73–90, https://doi.org/10.1515/rnam-2017-0007.
- Agoshkov, V.I., V.B. Zalesny, and T.O. Sheloput, 2020: Variational Data Assimilation in Problems of Modeling Hydrophysical Fields in Open Water Areas. Izvestiya, Atmospheric and Oceanic Physics, 56(3), 253–267, https://doi.org/10.1134/S0001433820030020.
- Agoshkov, V.I., N.R. Lezina, and T.O. Sheloput, 2020: Recovery of Boundary Functions on External and Internal Open Boundaries in an Open Sea Hydrodynamic Problem. Computational Mathematics and Mathematical Physics, 60(11), 1855–1871, https://doi.org/10.1134/S0965542520110019.
- Agoshkov, V.I. and T.O. Sheloput, 2017: The study and numerical solution of some inverse problems in simulation of hydrophysical fields in water areas with ‘liquid’ boundaries. Russ. J. Numer. Anal. Math. Model, 32(3), 147–164, https://doi.org/10.1515/rnam-2017-0013.
- Dement’eva, E.V., E.D. Karepova, and V.V. Shajdurov, 2013: Vosstanovlenie granichnoj funkcii po dannym nablyudenij dlya zadachi rasprostraneniya poverhnostnyh voln v akvatorii s otkrytoj granicej. Sibirskij zhurnal industrial’noj matematik, 16(1), 10–20.
- Edwards, C.A., A.M. Moore, I. Hoteit, and B.D. Cornuelle, 2015: Regional ocean data assimilation. Annual review of marine science, 7(1), 21–42, https://doi.org/10.1146/annurev-marine-010814-015821.
- Lebedev, S.A., 2016: Metodika obrabotki dannyh sputnikovoj al’timetrii dlya akvatorij Belogo, Barenceva i Karskogo morej. Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 13(6), 203–223.
- Myslenkov, S.A., 2011: Ispol’zovanie sputnikovoj al’timetrii dlya rascheta perenosa vod v Severnoj Atlantike. Trudy Gidrometcentra Rossii, 345, 119–125.
- Ngodock, H., M. Carrier, I. Souopgui, S. Smith, P. Martin, P. Muscarella, and G. Jacobs, 2016: On the direct assimilation of along-track sea-surface height observations into a free-surface ocean model using a weak constraints four-dimensional variational (4D-Var) method. Quarterly Journal of the Royal Meteorological Society, 142(695), 1160–1170, https://doi.org/10.1002/qj.2721">.
- Sheloput, T.O., 2021: Issledovanie i reshenie obratnyh zadach v problemah modelirovaniya gidrofizicheskih polej v akvatoriyah s zhidkimi granicami: Diss. ... kand. fiz.-mat. nauk: 05.13.18. Moscow, 128 p.
- Sрeloput, T.O., 2018: Chislennoe reshenie zadachi variacionnoj assimilyacii dannyh ob urovne na zhidkoj (otkrytoj) granice v modeli gidrotermodinamiki Baltijskogo morya // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 15(7), 15–23.
- Vasil’ev, F.P., 1981: Metody resheniya ekstremal’nyh zadach. Moscow, Nauka, 552 p.
- Zalesny, V.B., N.A. Diansky, V.V. Fomin, S.N. Moshonkin, and S.G. Demyshev, 2012: Numerical model of the circulation of the Black Sea and the Sea of Azov. Russian Journal of Numerical Analysis and Mathematical Modelling, 27(1), P. 95–112, https://doi.org/10.1515/rnam-2012-0006.
- Zalesnyi, V.B., A.V. Gusev, and V.I. Agoshkov, 2016: Modeling Black Sea circulation with high resolution in the coastal zone. Izvestiya, Atmospheric and Oceanic Physics, 52(3), 277–293.
- Zalesny, V.B., A.V. Gusev, V.O. Ivchenko, R. Tamsalu, and R. Aps, 2013: Numerical model of the Baltic Sea circulation. Russ. J. Numer. Anal. Math. Model, 28(1), 85–100, https://doi.org/10.1515/rnam-2013-0006">.
Transfer of copyrights occurs on the basis of a license agreement between the Author and Shirshov Institute of Oceanology, RAS