THE STRUCTURE OF INTRA-ANNUAL VARIABILITY OF HYDROPHYSICAL FIELDS OF THE OCEAN IN THE GLOBAL VERSION OF THE NEMO MODEL WITH A DATA ASSIMILATION SYSTEM

  • B. S. Strukov Hydrometeorological Research Center of Russian Federation (Hydrometcenter of Russia)
  • Yu. D. Resnyanskii Hydrometeorological Research Center of Russian Federation (Hydrometcenter of Russia)
  • A. A. Zelenko Hydrometeorological Research Center of Russian Federation (Hydrometcenter of Russia)
DOI 10.29006/1564-2291.JOR-2019.47(3).12
Keywords NEMO model, data assimilation, frequency spectrum, seasonal variation, semi-annual changes, water temperature, current velocity

Abstract

To analyze the intra-annual variability of the thermal and dynamic characteristics of the ocean, we used the calculations based on the NEMO model, including the assimilation of observational temperature and salinity data by Argo buoys, as well as satellite data on ice cover and sea surface temperature. The features of the geographical and vertical distributions of annual and semi-annual variations in water temperature and globaly averaged spectrum of current velocity are considered. The areas with a prevailing contribution of semi-annual fluctuations are identified. They are in the equatorial zone and in the northwestern Indian Ocean, which is under the influence of the monsoon processes.

References


  1. Chen G. and Wang X. Vertical structure of upper-ocean seasonality: Annual and semiannual cycles with oceanographic implications. J. Climate, 2016, Vol. 29, No. 1, pp. 37–59, doi: 10.1175/JCLI-D-14-00855.1.

  2. Dussin R., Barnier B., Brodeau L., and Molines J.-M. The Making of the DRAKKAR Forcing Set DFS5. DRAKKAR/MyOcean Report 01-04-16. April 2016, 34 p., https://www.drakkarocean.eu/publications/reports/report_DFS5v3_April2016.pdf.

  3. Kaurkin M.N., Ibraev R.A., and Belyaev K.P. Data assimilation in the ocean circulation model of high spatial resolution using the methods of parallel programming. Russian Meteorology and Hydrology, 2016, Vol. 41, No. 7, pp. 479–486.

  4. Korotaev G.K. Operational Oceanography: A New Branch of Modern Oceanological Science. Her. Russ. Acad. Sci., 2018, Vol. 88, No. 4, pp. 272–280, doi:10.1134/S1019331618040032.

  5. Locarnini R.A., Mishonov A.V., Antonov J.I., Boyer T.P., Garcia H.E., Baranova O.K., Zweng M.M., Paver C.R., Reagan J.R., Johnson D.R., Hamilton M., and Seidov D. World Ocean Atlas 2013, Volume 1: Temperature. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 73, 2013, 40 p.

  6. Madec G. and the NEMO team. NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No. 27, 2008. ISSN: 1288–1619, 386 p.

  7. Resnyanskii Yu.D., Tsyrulnikov M.D., Strukov B.S., and Zelenko A.A. Statistical Structure of Spatial Variability of the Ocean Thermohaline Fields from Argo Profiling Data, 2005– 2007. Oceanology, 2010, Vol. 50, No. 2, pp. 149–165., doi: 10.1134/S0001437010020013.

  8. Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S., and Schlax M.G. Daily highresolution-blended analyses for sea surface temperature. J. Climate, 2007, Vol. 20, pp. 5473–5496, doi: 10.1175/2007JCLI1824.1.

  9. Skripaleva E.A. Osobennosti sezonnoy izmenchivosti polya temperaturi na poverkhnosti Indiyskogo okeana po sputnikovim dannim (Features of seasonal variability of the Indian Ocean surface temperature field from in situ and satellite data). Reports of the National Academy of Sciences of Ukraine, 2009, No. 12, pp. 126–131.

  10. Strukov B.S., Resnyanskii Yu.D., and Zelenko A.A. Relaxation method for assimilating data on sea ice concentration in the NEMO – LIM3 model with multiple ice categories. Russian Meteorology and Hydrology, 2019, in press.

  11. Tsyrulnikov M.D. and Svirenko P.I. A covariance model based on 3-D spatial filters: potential for flow-dependent covariance modeling. Res. Act. Atm. Ocean. Model., WMO, 2007, Rep. Nо. 35, pp. 1.39–1.40.

  12. Tsyrulnikov M.D., Svirenko P.I., Gorin V.E., Gorbunov M.E., and Klimova E.G. Razrabotka skhemi trekhmernogo variatsionnogo usvoeniya dannikh v Gidrometsentre Rossii (Development of three-dimensional variational data assimilation scheme in the Hydrometeorological Center of Russia). 80 Let Gidrometsentru Rossii (80 Years of Hydrometcenter of Russia), Moscow: Triada LTD, 2010, pp. 21–35.

  13. Vancoppenolle M., Fichefet T., Goosse H., Bouillon S., Madec G., and Maqueda M.A.M. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modelling, 2009, Vol. 27, Is. 1–2, pp. 33–53. doi:10.1016/j.oceamod.2008.10.005.

  14. Wyrtki K. and Kilonsky B. Mean water and current structure during the Hawaii-toTahiti Shuttle Experiment. J. Phys. Oceanogr., 1984, Vol. 14, No. 2, pp. 242–254, doi: 10.1175/1520-0485(1984)014<0242:MWACSD>2.0.CO;2

  15. Zelenko A.A. and Resnyanskii Yu.D. Marine Observational Systems as an Integral Part of Operational Oceanology: A review. Russian Meteorology and Hydrology, 2018, Vol. 43, No. 12, pp. 797–814, doi:10.3103/S1068373918120014.

  16. Zelenko A.A., Resnyanskii Yu.D., Tsyrulnikov M.D., Strukov B.S., and Svirenko P.I. Monitoring krupnomasshtabnoy strukturi gidrofizicheskikh poley okeana (Monitoring of large scale structure of hydrophysical fields in the ocean). Modern Problems of Ocean and Atmosphere Dynamics, Moscow: Triada LTD, 2010, pp. 131–172.

  17. Zelenko A.A., Vil’fand R.M., Resnyanskii Y.D., Strukov B.S., Tsyrulnikov M.D., and Svirenko P.I. An ocean data assimilation system and reanalysis of the World Ocean hydrophysical fields. Izvestiya. Atmospheric and Oceanic Physics, 2016, Vol. 52, Is. 4, pp. 443–454.

  18. Zweng M.M., Reagan J.R., Antonov J.I., Locarnini R.A., Mishonov A.V., Boyer T.P., Garcia H.E., Baranova O.K., Johnson D.R., Seidov D., and Biddle M.M. World Ocean Atlas 2013, Volume 2: Salinity. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 74, 2013, 39 p.
Published
2019-11-06
Section
Dedicated to the 90th anniversary of Prof. K.N. Fedorov Ocean physics