A METHOD FOR RECONSTRUCTING BOTTOM TOPOGRAPHY FOR AN ENCLOSED BASIN FROM SCATTERED, SPARSE MEASUREMENT DATA
Abstract
Numerical simulation of circulation and internal waves in a basin requires the knowledge of bottom topography, defined as a continuous and continuously differentiable field (un¬less there are known features of the relief to justify the opposite), which is, unfortunately, not always available with sufficient resolution and coverage. In this article we review ex¬isting techniques for producing regularly gridded field from scattered bathymetry data - in our case raw field data measured by a boat equipped with an echo sounder and GPS - and propose a new one, which we believe is the most optimal for this situation. The technique essentially goes along the line of approach of Sandwell (1987) using Green functions to construct biharmonic spline interpolation, which we augment by adding coastline and in-troduce special preprocessing of measured data to identify and eliminate (by averaging out) potentially contradictory and unreliable measurements which may cause spurious oscillations of biharmonic spline.
References
- Becker J.J., Sandwell D.T., Smith W.H.F., Braud J., Binder B., Depner J., Fabre D., Factor J., Ingalls S., Kim S.-H., Ladner R., Marks K., Nelson S., Pharaoh A., Sharman G., Trimmer R., VonRosenburg J., Wallace G., and Weatherall P. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30 PLUS. Marine Geodesy, 2009, Vol. 32, No. 4, pp. 355–371, doi:10.1080/01490410903297766.
- Beckmann A. and Haidvogel D.B. Numerical simulation of flow around a tall isolated seamount Part I. Problem formulation and model accuracy. J. Phys. Oceanogr., 1993, Vol. 23, pp. 1736–1753, doi:10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.
- Briggs I.C. Machine contouring using minimum curvature. Geophysics, 1974, Vol. 29, No. 1, pp. 39–48, doi:10.1190/1.1440410.
- Kompaniets L.A., Yakubaylik T.V. and Volodko O.S. Analysis of characteristics of lake Shira based on in situ observations. Vestnik Buryat. Gos. Uvivers.: matematika i informatika, Ulan- Ude, Izd. BGU, 2012, issue 9, pp. 167–176. Original text in Russian: Kompaniets L.A., Yakubaylik T.V., Volodko O. Saliz kharakteristic ozera Shira na osnove naturnykh dannykh. Vestnik Buryatskogo gosudarstvennogo universiteta: matematika i informatika Ulan-Ude: Izd. BGU, 2012, vypusk 9, pp. 167–176.
- Lemckert C. and Imberger J. Turbulent benthic boundary layer mixing events in fresh water lakes. Physical Processes in Lakes and Oceans, J. Imberger, editor, AGU, Washington, D.C., 1998, Vol. 54, pp. 503–516, doi:10.1029/CE054p0503.
- Penenko V.V. Estimate of anthropogenic impact onto lake Baikal region using numerical simu¬lation. Meteorologiya i gidrologiya, 1989, No. 7, pp. 76–84. Original text in Russian: Penenko V.V. Otsenka antropogennogo vliyaniya na region ozera Baikal s pomoshchyu chislennogo modelirovaniya. Meteorologiya i gidrologiya, 1989, No. 7, pp. 76–84.
- Press, W.H., Teukolsky S.A., Vetterling, W.T. and Flannery B.P. Numerical Recipes in Fortran 77. The Art of Scientific Computing, 2nd Edition Cambridge University Press, 1992, ISBN 0-521-43064-X, 818 p.
- Sandwell D.T. Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data Geophys. Res. Lett., 1987, Vol. 14, No. 2, pp. 139–142, doi:10.1029/gl014i002p00139.
- Shabas I.N. Mathematical modeling of multicomponent material transport in Sea of Azov using multiprocessor computers. Izvestia YuFU, Tech. Sci. 2014, No. 12, pp. 200–210. Orig¬inal text in Russian: Shabas I.N. Matematicheskoe modelirovanie zadach perenosa mno- gokomponentnykh primesey v Azovskom more na mnogoprotsessornykh vychislitelnykh sistemakh. Izvestia YuFU, Tekhnicheskie nauki, 2014, No. 12, pp. 200–210.
- Shchepetkin A.F. and McWilliams J.C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate, J. Geophys. Res. Oceans, 2003, Vol. 108(C3), Art. No. 3090, doi:10.1029/2001JC001047.
- Smith W.H. F. and Wessel P. Gridding with continuous curvature splines in tension. Geophysics, 1990, Vol. 5, No. 3, pp. 293–305, doi:10.1190/1.1442837.
- Volodko O., Kompaniets L. and Gavrilova L. Analysis of the velocity profile in Lake Shira in summer using principal component analysis. International Multidisciplinary Scientific GeoConference SGEM, 2017, Vol. 17, pp. 831–838.
- Wuest A. and Lorke A. Small-scale hydrodynamics in lakes. Annual Rev FluidMech., 2003, Voll. 35, pp. 373–412, doi:10.1146/annurev.fluid.35.101101.161220.
Transfer of copyrights occurs on the basis of a license agreement between the Author and Shirshov Institute of Oceanology, RAS