CURRENT STATE AND DEVELOPMENT PROSPECTS OF TOWED OCEANOLOGICAL PROBING SYSTEMS
Abstract
The article is devoted to the analysis of modern towed probig systems used to measure seawater characteristics in situ during vessel motion. Key methods are considered, including integral meters, hydrosonde strings, systems with automatic depth control and cyclic sounding. Particular attention is paid to the advantages of towed systems over autonomous devices (drifters, gliders) and stationary networks: high mobility, operational data transmission, flexible adaptation of the trajectory and depth of measurements. Based on experimental data and the author’s developments, a comparative analysis of 8 methods is carried out, their technical characteristics, limitations and areas of application are highlighted. For example, the method of cyclic depth change (up to 1000 m at a speed of 15 knots) provides high resolution in the study of microstructural processes, and hybrid systems (for example, MGI 4201) combine CTD, hydrochemistry and turbulence measurements, reducing the time of expeditions. The results are presented in tabular form, including an assessment of the methods by the criteria: spatiotemporal resolution, towing speed, and measurement complexity. Practical recommendations emphasize the feasibility of combining methods to solve specific problems (microstructural, mesoscale, and large-scale studies). The key conclusion is the formation of a new paradigm for expeditionary research based on synchronous multiparametric monitoring in real time. This allows moving from local measurements to dynamic control of the probing process, which significantly increases the efficiency of studying ocean processes and optimizes resource costs.
References
- Barry, D. T. and D. W. Branham, 1968: Towed oceanographic sensor system: Patent US3404565.
- Chernichenko, A. S., 1982: Vsplyvayushchiy zond dlya izmereniya gidrofizicheskikh parametrov vody (Pop-up probe for measuring hydrophysical parameters of water): Patent SU959010A1 (SSSR), Bulletin. No. 34.
- Dever, M., M. Freilich, T. Farrar, B. Hodges, T. Lanagan, A. Baron, and A. Mahadevan, 2020: EcoCTD for profiling oceanic physical–biological properties from an underway ship. Journal of Atmospheric and Oceanic Technology, 37 (5), 825–840, https://doi.org/10.1175/JTECH-D-19-0145.1.
- Furlong, A., B. Beanlands, and M. Chin-Yee, 1997: Moving vessel profiler (MVP) real time near vertical data profiles at 12 knots. Oceans’ 97. MTS/IEEE Conference Proceedings. IEEE, 1, 229–234, https://doi.org/10.1109/OCEANS.1997.634367.
- Furlong, A., J. Osier, H. Christian, D. Cunningham, and S. Pecknold, 2006: The Moving Vessel Profiler (MVP) – a Rapid Environmental Assessment Tool for the collection of water column profiles and sediment classification. Defense Research and Development Canada, 13.
- Gaisky, V. A., Yu. G. Artemov, V. A. Blinkov, A. G. Ermakov, N. A. Zharov, I. S. Kirsanov, and V. M. Nikolaev, 1987: Avtomatizirovannye sistemy s buksiruyemymi priborami v okeanologicheskikh issledovaniyakh (Automated systems with towed instruments in oceanographic research). Kyiv, Naukova dumka, 176 p.
- Garau, B., S. Ruiz, W. G. Zhang, A. Pascual, E. Heslop, J. Kerfoot, and J. Tintore, 2011: Thermal lag correction on Slocum CTD glider data. J. Atmos. Oceanic Technol, 28 (9), 1065–1071, https://doi.org/10.1175/JTECH-D-10-05030.1.
- Gardiner, J. and I. Slade, 2016: Rapid Sound Speed Profiling in Plymouth Sound (Part 1), Soundings, 67, 23 p.
- Gregg, M. C. and W. C. Hess, 1985: Dynamic response calibration of Sea-Bird temperature and conductivity probes. J. Atmos. Oceanic Technol., 2 (30), 304–313, https://doi.org/10.1175/1520-0426(1985)002,0304.
- Grekov, N. A., 1982: Primeneniye teorii raspoznavaniya obrazov v obrabotke dannykh izmereniy kompleksa “Shleyf” (Application of pattern recognition theory in processing measurement data of the Shleif complex). Metody i apparatura dlya okeanologicheskikh issledovaniy, Sevastopol, MGI Akademii Nauk USSR, 138–144.
- Grekov, N. A., 1985: Buksiruyemyye kompleksy s raspredelennymi datchikami temperatury dlya issledovaniya deyatel’nogo sloya okeana: dis. … kand. tekhn. nauk: 01.04.12 (Towed complexes with distributed temperature sensors for studying the active layer of the ocean: Cand. tech. sci. thesis), Sevastopol, MGI Akademii Nauk USSR, 161 p.
- Grekov, N. A. and А. F. Ivanov, 1985: Sposob izmereniya vertikal’nykh raspredeleniy elementov morskoy vody na okeanologicheskikh razrezakh (Method for measuring vertical distributions of seawater elements in oceanographic sections). Avtorskoye svidetel’stvo SU1191735A1 (SSSR). B. I., 42, 158 p.
- Grekov, N. A., А. F. Ivanov, and R. N. Solov’yeva, 1989: Ustroystvo sbrasyvaniya svobodnopadayushchego gidrozonda razovogo deystviya (Single-action free-fall hydrosonde release device). Patent SU1525646А1 (SSSR), Bulletin No. 44.
- Grekov, N. A., 1990: Ustroystvo dlya otbora prob zhidkosti (Liquid sampling device). Avtorskoye svidetel’stvo 1602165.
- Grekov, N. A. and N. V. Saltanov, 2001: Izmereniye vertikal’nykh raspredeleniy parametrov vodnoy sredy s dvizhushchegosya sudna (Measuring vertical distributions of aquatic environment parameters from a moving vessel). Sistemy kontrolya okruzhayushchey sredy, Sevastopol, MGI Akademii Nauk USSR, 71–80.
- Grekov, N. A., N. V. Saltanov, and P. G. Avramenko, 2004: Analiz vremeni tormozheniya i usiliy buksiruyemykh zondiruyushchikh sistem, kontroliruyushchikh vodnuyu sredu (Analysis of braking times and forces of towed probing systems monitoring the aquatic environment). Sistemy kontrolya okruzhayushchey sredy, Sevastopol, MGI Akademii Nauk USSR, 73–76.
- Grekov, A. N., N. A. Grekov, and E. N. Sychov, 2020: Srednechastotnyye akusticheskiye metody i sredstva dlya issledovaniya vodnoy sredy (Mid-frequency acoustic methods and instruments for the study of the aquatic environment). Sevastopol, IPTS, 126 p., ISBN 978-5-6044196-6-3.
- Hanawa, K., P. Rual, R. Bailey, A. Sy, and M. Szabados, 1995: A new depth-time equation for Sippican or TSK T-7, T-6 and T-4 expendable bathythermographs (XBT). Deep Sea Research Part I: Oceanographic Research Papers, 42 (8), 1423–1451, https://doi.org/10.1016/0967-0637(95)97154-Z.
- Ivanov, А. F., A. N. Paramonov, and N. A. Grekov, 1980: Buksiruyemyy kompleks dlya issledovaniya izmenchivosti integral’noy temperatury verkhnego sloya okeana (Towed complex for studying the variability of the integral temperature of the upper layer of the ocean). Oceanology, 20 (5), 937–942.
- Ivanov, А. F., A. N. Paramonov, and N. A. Grekov, 1980: Vosstanovleniye profiley temperatury morskoy vody po dannym izmereniy raspredelennymi datchikami temperatury (Reconstruction of seawater temperature profiles from distributed temperature sensor measurements). Morskiye gidrofizicheskiye issledovaniya, Sevastopol, MGI Akademii Nauk USSR, 2, 157–163.
- Klinke, J., 2009: UCTD – A new tool for underway soundspeed profiling. OCEANS 2009-EUROPE. IEEE, 1–4. https://doi.org/10.1109/OCEANSE.2009.5278112.
- Kock, T., B. Baschek, F. Wobbe, M. Heineke, R. Riethmueller, S. C. Deschner, G. Seidel, and P. Calil, 2023: An advanced towed CTD chain for physical-biological high resolution in situ upper ocean measurements. Frontiers in Marine Science, 10, 1183061, https://doi.org/10.3389/fmars.2023.1183061.
- Kolesnikov, A. G., N. A. Panteleyev, V. D. Pisarev, and P. V. Vakulov, 1963: Glubokovodnyy avtonomnyy turbulimetr – pribor dlya registratsii turbulentnykh fluktuatsiy skorosti i temperatury v okeane (Deep-sea autonomous turbulimeter – a device for recording turbulent fluctuations of speed and temperature in the ocean). Oceanology, 3 (5), 911.
- Kuklev, S. B., A. G. Zatsepin, and V. T. Paka et al. 2021: Experience of Simultaneous Measurements of Parameters of Currents and Hydrological Structure of Water from a Moving Vessel. Oceanology, 61, 132–138.
- Lyamin, E. A., M. F. Naumenko, V. T. Paka, K. I. Chigrakov, and M. A. Shmatko, 1965: Opyt primeneniya buksiruyemoy girlyandy termistorov dlya issledovaniya termicheskoy struktury moray (Experience of using a towed string of thermistors to study the thermal structure of the sea). Oceanology, 5 (3), 553–557.
- Martin, J. B., R. G. Thomas, and K. M. Hartl, 2004: An inexpensive, automatic, submersible water sampler. Limnology and Oceanography: Methods, 2 (12), 398–405, https://doi.org/10.4319/lom.2004.2.398.
- Nomoto, Masao, 1980: Automatic lifting gear of underwater towed body: Patent JPS5543960B2.
- Paka, V. T., N. N. Korchashkin, V. V. Narozhnyy, and A. B. Shmagin, 1984: Avtomatizirovannaya sistema termoprofilirovaniya verkhnego sloya okeana (Automated system for temperature profiling of the upper ocean layer). Oceanology, 24 (1), 170–174.
- Paka, V. T., and V. V. Kushnikov, 1989: Ob ispol’zovanii termokhalozondov v rezhime buksirovki (On the use of thermohalosondes in towing mode). Oceanology, 29 (1), 160–163.
- Paka V. T., G. A. Bambizov, H. H. Golenko, Ye. P. Zarubin, V. A. Maslov, and A. P. Podufalov, 1994: Skaniruyushchiy buksiruyemyy mul’tizondovyy kompleks termokhalotral (Scanning towed multiprobe complex thermohalotral). Oceanology, 34 (1), 133–138.
- Paka, V. T., V. N. Nabatov, I. D. Lozovatsky, and T. M. Dillon, 1999: Oceanic microstructure measurements by BAKLAN and GRIF. Journal of Atmospheric and Oceanic Technology, 16 (11), 1519–1532.
- Paka, V. T., V. I. Baranov, A. A. Kondrashov, A. O. Korzh, and A. P. Podufalov, 2012: Privyaznoy svobodno padayushchiy zond (Tethered Free-Fall Probe): Patent RU121599U1 (Russia). Bulletin No. 30.
- Reseghetti, F., M. Borghini, and G. M. R. Manzella, 2007: Factors affecting the quality of XBT data–results of analyses on profiles from the Western Mediterranean Sea. Ocean Science, 3 (1), 59–75, https://hal.science/hal-00298314v1.
- Rudnick, D. L. and J. Klinke, 2007: The Underway Conductivity-Temperature-Depth Instrument. Journal of Atmospheric and Oceanic Technology, 24 (11), 1910–1923, https://doi.org/10.1175/JTECH2100.1.
- Saltanov, N. V., P. G. Avramenko, and N. A. Grekov, 2002: Otsenka dinamicheskikh usiliy v sisteme tros-zond buksiruyemogo kompleksa kontrolya vodnoy sredy (Evaluation of dynamic forces in the cable-probe system of a towed water environment monitoring complex). Sistemy kontrolya okruzhayushchey sredy, Sevastopol, MGI Akademii Nauk USSR, 90–93.
- Smirnov, G. V., 1984: Proyektirovaniye modul’nykh sistem dlya avtomatizatsii okeanograficheskikh eksperimental’nykh issledovaniy: dis. … d-ra tekhn. nauk: 01.04.12 (Design of modular systems for automation of oceanographic experimental research: Dr. tech. sci. thesis), Sevastopol, 424 p.
- Song, X., H. Li, X. Lin, X. Chen, X. Guo, and J. Tian, 2009: Sea experiments of the Underway Conductivity-Temperature-Depth prototype made in China. Journal of Ocean University of China, 8, 409–415, https://doi.org/10.1007/s11802-009-0409-x.
- Ullman, D. S. and D. Hebert, 2014: Processing of underway CTD data. Journal of Atmospheric and Oceanic Technology, 31 (4), 984–998, https://doi.org/10.1175/JTECH-D-13-00200.1.
- https://rocklandscientific.com/wp-content/uploads/2025/04/VMP-6000.pdf.(last accessed in 04.03.2025).
- https://naeco.ru/measurement_equipment/vrgp/.(last accessed in 20.02.2025).
- https://rbr-global.com/wp-content/uploads/2023/12/RBRglissando-Underway-Profiling-Winch-Guide-0015437revA.pdf.(last accessed in 05.03.2025).
Transfer of copyrights occurs on the basis of a license agreement between the Author and Shirshov Institute of Oceanology, RAS




