THE STUDY OF VORTEX PATCHES PROPAGATION AND PASSIVE ADMIXTURE PATCHЕS IN THE VICINITY OF AN ISOLATED UNDERWATER MOUNTAIN WITHIN THE FRAMEWORK OF THE THREE-LAYER OCEAN MODEL
DOI
10.29006/1564-2291.JOR-2025.53(3).3
关键词
three-layer ocean model, topographic eddy, passive admixture, vortex interaction, vortex ventilation, contour dynamics method
摘要
Within the framework of the three-layer quasi-geostrophic model in the f-plane approximation, the study of the effect of a topographic anticyclone formed over an isolated underwater mountain on the movement of a surface, subsurface or bottom vortex spot, or a passive admixture spot transported by a zonal vertically homogeneous current, was conducted using the contour dynamics method. In particular, the possibility of partial capture of a vortex spot by a quasistationary topographic vortex was shown.
参考
- Al’berg, Dzh., E. Nil’son, and Dzh. Uolsh, 1972: Teoriya splajnov i ee prilozheniya (The Theory of Splines and Their Applications). Moscow, Mir, 316 p.
- Alomar, C., F. Estarellas, and S. Deudero, 2016: Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar. Environ. Res., 115, 1–10.
- Davies, P. A., 1971: Experiments on Taylor columns in rotating, stratified fluids. Ph.D. thesis, University of Newcastle-upon-Tyne.
- Davies, P. A., 1972: Experiments on Taylor columns in rotating stratified fluids. J. Fluid Mech., 54, 691–718.
- Dritschel, D. G., 1990: The stability of elliptical vortices in an external straining flow. J. Fluid Mech., 210, 223–261.
- Egorova, V. M., M. A. Sokolovskiy, and G. A. Zodiatis, 2024: Three-Layer Model of Hydrodynamic Processes in the Cyprus Eddy System. Ocean Dyn., 74 (1), 19–36.
- Egorova, V. M., V. N. Zyryanov, and M. A. Sokolovskiy, 2022: The hydrodynamic theory of the Cyprus Eddy. Ocean Dyn., 72 (1), 1–20.
- Egorova, V. M., 2024: Vihrevaya dinamika nad neosesimmetrichnoj topografiej dna vo vrashchayushchejsya stratificirovannoj zhidkosti (v prilozhenii k Kiprskomu vihryu) (Vortex dynamics over non-axisymmetric bottom topography in a rotating stratified fluid (with application to the Cyprus Eddy)): Dissertaciya na soiskanie uchenoj stepeni kandidata fiziko-matematicheskih nauk: 1.6.17. EDN EWOAWU , Moscow, 101 p.
- Filyushkin, B. N., M. A. Sokolovskiy, N. G. Kozhelupova, and V. M. Vagina, 2010: Dynamics of intrathermocline lenses. Doklady Earth Sci., 434 (2), 1377–1380.
- Hajrer, E., S. Nersett, and G. Vanner, 1990: Reshenie obyknovennyh differencial’nyh uravnenij. Nezhestkie zadachi (Solving Ordinary Differential Equations. I: Nonstiff Problems). Moscow, Mir, 512 p.
- Hide, R., 1961: Origin of Jupiter’s Great Red Spot. Nature, 190 (4779), 75–76.
- Hogg, N. G., 1973: On the stratified Taylor column. J. Fluid Mech, 58 (3), 517–537.
- Kamenkovich, V. M., M. N. Koshlyakov, and A. S. Monin, 1987: Sinopticheskie vihri v okeane (Synoptic Eddies in the Ocean). Leningrad, Gidrometeoizdat, 264 p.
- Kozlov, V. F., 1983: Metod konturnoj dinamiki v model’nyh zadachah o topograficheskom ciklogeneze v okeane (Contour dynamics method in model problems of topographic cyclogenesis in the ocean). Izvestia AN SSSR. Fizika atmosfery i okeana, 19 (8), 845–854.
- Kozlov, V. F., 1984: Modeli topograficheskih vihrej v okeane (Models of Topographic Eddies in the Ocean). Moscow, Nauka, 200 p.
- Liubartseva, S., G. Coppini, R. Lecci, and E. Clementi, 2018: Tracking plastics in the Mediterranean: 2D Lagrangian model. Mar. Pollut. Bull., 129 (1), 151–162.
- Makarov, V. G., 1990: Kompleks programm dlya issledovaniya metodom konturnoj dinamiki ploskih vihrevyh techenij ideal’noj zhidkosti (The software package for studying the contour dynamics of plane vortex flows of an ideal fluid). V sb.: Metod konturnoj dinamiki v okeanologicheskih issledovaniyah. Vladivostok, DVO AN SSSR, 28–39.
- Makarov, V. G., 1991: Vychislitel’nyj algoritm metoda konturnoj dinamiki s izmenyaemoj topologiej issleduemyh oblastej (The computational algorithm of the contour dynamics method with variable topology of the studied areas). Modelirovanie v mekhanike, 5 (4), 83–95.
- Melander, M. V., N. J. Zabusky, and J. C. McWilliams, 1987: Asymmetric vortex merger in two dimensions: Which vortex is ‘‘victorious’’? J. Phys. Fluids, 30 (9), 2610–2612.
- Mel’nikov, M. E., T. E. Sedysheva, G. V. Aganova, and V. M. Anohin, 2013: Osobennosti geomorfologicheskogo stroeniya gajotov Magellanovyh gor (Tihij okeana) (Features of the geomorphological structure of the guyots of the Magellan Mountains (Pacific Ocean)). Izvestiya Rossijskogo geograficheskogo obshchestva, 145 (6), 29–43.
- Monin, A. S. and G. M. Zhiharev, 1990: Okeanskie vihri (Ocean eddies). Uspekhi fizicheskih nauk, 160 (5), 1–47.
- Ozmidov, R. V., 1986: Diffuziya primesej v okeane (Diffusion of Impurities in the Ocean). Leningrad, Gidrometeoizdat, 278 p.
- Pullin, D. L., 1992: Contour Dynamics Methods. Annu. Rev. Fluid Mech., 24, 89–115.
- Ryzhov, E. A. and K. V. Koshel’, 2011: Ventilirovanie oblasti topograficheskogo vihrya zahvachennym svobodnym vihrem (Ventilation of the topographic vortex region by a captured free vortex). Izvestiya Rossijskoj akademii nauk. Fizika atmosfery i okeana., 47 (6), 845–857.
- Sokolovskiy, M. A., 1991: Modelirovanie trekhslojnyh vihrevyh dvizhenij v okeane metodom konturnoj dinamiki (Modeling of three-layer eddy motions in the ocean using the contour dynamics method). Izv. AN SSSR. Fizika atmosfery i okeana, 27 (5), 550–562.
- Sokolovskiy, M. A., 1997: Stability analysis of the axisymmetric three-layered vortex using contour dynamics method. J. Comput. Fluid Dyn., 6 (2), 133–156.
- Sokolovskiy, M. A. and J. Verron, 2014: Dynamics of Vortex Structures in a Stratified Rotating Fluid. Swidzerland: Springer, Atmos and Oceanogr Sci Lib. 47, 382 p.
- Shatohin, M. V. and V. M. Egorova, 2024: Dinamika primesi vo vneshnem deformacionnom pole nad podvodnoj vozvyshennost’yu (Dynamics of admixture in the external deformation field above an underwater elevation). Volny i vihri v slozhnyh sredah: Sbornik materialov 15-j mezhdunarodnoj konferencii – shkoly molodyh uchenyh, Moskva, 19–22 noyabrya 2024 g., Moscow, OOO “ISPO-print”, 247–250.
- Shatohin, M. V. and M. A. Sokolovskiy, 2023: Dinamika passivnoj primesi v poverhnostnom i podpoverhnostnom sloyah vo vneshnem deformacionnom pole nad podvodnoj vozvyshennost’yu v okeane (Dynamics of passive admixture in surface and subsurface external deformation field above an ocean guyot). Vestnik Moskovskogo universiteta. Seriya 3: Fizika. Astronomiya, 3, 2330901-1-11, https://doi.org/10.55959/MSU0579-9392.78.2330901.
- Taylor, G. I., 1921: Experiments with rotating fluids. Proc. Roy. Soc. Lond. Ser. A, Containing Papers of a Mathematical and Physical Character, 100 (703), 114–121.
- Taylor, G. I., 1923: Experiments on the motion of solid bodies in rotating fluids. Proc. Roy. Soc. Lond. Ser. A, Containing Papers of a Mathematical and Physical Character, 104 (725), 213–219.
- Zabusky, N. J., M. H. Hughes, and K. V. Roberts, 1979: Contour dynamics for Euler equations in two dimensions. J. Comput. Phys., 30 (1), 96–106.
- Zyryanov, V. N., 1995: Topograficheskie vihri v dinamike morskih techenij (Topographic Eddies in the Dynamics of Sea Currents). Moscow, IVP RAN, 240 p.
- Zyryanov, V. N., 2006: Topographic eddies in a stratified ocean. Reg. Chaot. Dyn., 11 (4), 491–521.
已出版
2025-09-21
栏目
Ocean physics and climate
Transfer of copyrights occurs on the basis of a license agreement between the Author and Shirshov Institute of Oceanology, RAS