THE STUDY OF VORTEX PATCHES PROPAGATION AND PASSIVE ADMIXTURE PATCHЕS IN THE VICINITY OF AN ISOLATED UNDERWATER MOUNTAIN WITHIN THE FRAMEWORK OF THE THREE-LAYER OCEAN MODEL

  • M. V. Shatokhin Water Problem Institute, Russian Academy of Science
  • V. M. Egorova Water Problem Institute, Russian Academy of Science
  • M. A. Sokolovskiy Water Problem Institute, Russian Academy of Science; Shirshov Institute of Oceanology, Russian Academy of Sciences
DOI 10.29006/1564-2291.JOR-2025.53(3).3
关键词 three-layer ocean model, topographic eddy, passive admixture, vortex interaction, vortex ventilation, contour dynamics method

摘要

Within the framework of the three-layer quasi-geostrophic model in the f-plane approximation, the study of the effect of a topographic anticyclone formed over an isolated underwater mountain on the movement of a surface, subsurface or bottom vortex spot, or a passive admixture spot transported by a zonal vertically homogeneous current, was conducted using the contour dynamics method. In particular, the possibility of partial capture of a vortex spot by a quasistationary topographic vortex was shown.

参考


  1. Al’berg, Dzh., E. Nil’son, and Dzh. Uolsh, 1972: Teoriya splajnov i ee prilozheniya (The Theory of Splines and Their Applications). Moscow, Mir, 316 p.

  2. Alomar, C., F. Estarellas, and S. Deudero, 2016: Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar. Environ. Res., 115, 1–10.

  3. Davies, P. A., 1971: Experiments on Taylor columns in rotating, stratified fluids. Ph.D. thesis, University of Newcastle-upon-Tyne.

  4. Davies, P. A., 1972: Experiments on Taylor columns in rotating stratified fluids. J. Fluid Mech., 54, 691–718.

  5. Dritschel, D. G., 1990: The stability of elliptical vortices in an external straining flow. J. Fluid Mech., 210, 223–261.

  6. Egorova, V. M., M. A. Sokolovskiy, and G. A. Zodiatis, 2024: Three-Layer Model of Hydrodynamic Processes in the Cyprus Eddy System. Ocean Dyn., 74 (1), 19–36.

  7. Egorova, V. M., V. N. Zyryanov, and M. A. Sokolovskiy, 2022: The hydrodynamic theory of the Cyprus Eddy. Ocean Dyn., 72 (1), 1–20.

  8. Egorova, V. M., 2024: Vihrevaya dinamika nad neosesimmetrichnoj topografiej dna vo vrashchayushchejsya stratificirovannoj zhidkosti (v prilozhenii k Kiprskomu vihryu) (Vortex dynamics over non-axisymmetric bottom topography in a rotating stratified fluid (with application to the Cyprus Eddy)): Dissertaciya na soiskanie uchenoj stepeni kandidata fiziko-matematicheskih nauk: 1.6.17. EDN EWOAWU , Moscow, 101 p.

  9. Filyushkin, B. N., M. A. Sokolovskiy, N. G. Kozhelupova, and V. M. Vagina, 2010: Dynamics of intrathermocline lenses. Doklady Earth Sci., 434 (2), 1377–1380.

  10. Hajrer, E., S. Nersett, and G. Vanner, 1990: Reshenie obyknovennyh differencial’nyh uravnenij. Nezhestkie zadachi (Solving Ordinary Differential Equations. I: Nonstiff Problems). Moscow, Mir, 512 p.

  11. Hide, R., 1961: Origin of Jupiter’s Great Red Spot. Nature, 190 (4779), 75–76.

  12. Hogg, N. G., 1973: On the stratified Taylor column. J. Fluid Mech, 58 (3), 517–537.

  13. Kamenkovich, V. M., M. N. Koshlyakov, and A. S. Monin, 1987: Sinopticheskie vihri v okeane (Synoptic Eddies in the Ocean). Leningrad, Gidrometeoizdat, 264 p.

  14. Kozlov, V. F., 1983: Metod konturnoj dinamiki v model’nyh zadachah o topograficheskom ciklogeneze v okeane (Contour dynamics method in model problems of topographic cyclogenesis in the ocean). Izvestia AN SSSR. Fizika atmosfery i okeana, 19 (8), 845–854.

  15. Kozlov, V. F., 1984: Modeli topograficheskih vihrej v okeane (Models of Topographic Eddies in the Ocean). Moscow, Nauka, 200 p.

  16. Liubartseva, S., G. Coppini, R. Lecci, and E. Clementi, 2018: Tracking plastics in the Mediterranean: 2D Lagrangian model. Mar. Pollut. Bull., 129 (1), 151–162.

  17. Makarov, V. G., 1990: Kompleks programm dlya issledovaniya metodom konturnoj dinamiki ploskih vihrevyh techenij ideal’noj zhidkosti (The software package for studying the contour dynamics of plane vortex flows of an ideal fluid). V sb.: Metod konturnoj dinamiki v okeanologicheskih issledovaniyah. Vladivostok, DVO AN SSSR, 28–39.

  18. Makarov, V. G., 1991: Vychislitel’nyj algoritm metoda konturnoj dinamiki s izmenyaemoj topologiej issleduemyh oblastej (The computational algorithm of the contour dynamics method with variable topology of the studied areas). Modelirovanie v mekhanike, 5 (4), 83–95.

  19. Melander, M. V., N. J. Zabusky, and J. C. McWilliams, 1987: Asymmetric vortex merger in two dimensions: Which vortex is ‘‘victorious’’? J. Phys. Fluids, 30 (9), 2610–2612.

  20. Mel’nikov, M. E., T. E. Sedysheva, G. V. Aganova, and V. M. Anohin, 2013: Osobennosti geomorfologicheskogo stroeniya gajotov Magellanovyh gor (Tihij okeana) (Features of the geomorphological structure of the guyots of the Magellan Mountains (Pacific Ocean)). Izvestiya Rossijskogo geograficheskogo obshchestva, 145 (6), 29–43.

  21. Monin, A. S. and G. M. Zhiharev, 1990: Okeanskie vihri (Ocean eddies). Uspekhi fizicheskih nauk, 160 (5), 1–47.

  22. Ozmidov, R. V., 1986: Diffuziya primesej v okeane (Diffusion of Impurities in the Ocean). Leningrad, Gidrometeoizdat, 278 p.

  23. Pullin, D. L., 1992: Contour Dynamics Methods. Annu. Rev. Fluid Mech., 24, 89–115.

  24. Ryzhov, E. A. and K. V. Koshel’, 2011: Ventilirovanie oblasti topograficheskogo vihrya zahvachennym svobodnym vihrem (Ventilation of the topographic vortex region by a captured free vortex). Izvestiya Rossijskoj akademii nauk. Fizika atmosfery i okeana., 47 (6), 845–857.

  25. Sokolovskiy, M. A., 1991: Modelirovanie trekhslojnyh vihrevyh dvizhenij v okeane metodom konturnoj dinamiki (Modeling of three-layer eddy motions in the ocean using the contour dynamics method). Izv. AN SSSR. Fizika atmosfery i okeana, 27 (5), 550–562.

  26. Sokolovskiy, M. A., 1997: Stability analysis of the axisymmetric three-layered vortex using contour dynamics method. J. Comput. Fluid Dyn., 6 (2), 133–156.

  27. Sokolovskiy, M. A. and J. Verron, 2014: Dynamics of Vortex Structures in a Stratified Rotating Fluid. Swidzerland: Springer, Atmos and Oceanogr Sci Lib. 47, 382 p.

  28. Shatohin, M. V. and V. M. Egorova, 2024: Dinamika primesi vo vneshnem deformacionnom pole nad podvodnoj vozvyshennost’yu (Dynamics of admixture in the external deformation field above an underwater elevation). Volny i vihri v slozhnyh sredah: Sbornik materialov 15-j mezhdunarodnoj konferencii – shkoly molodyh uchenyh, Moskva, 19–22 noyabrya 2024 g., Moscow, OOO “ISPO-print”, 247–250.

  29. Shatohin, M. V. and M. A. Sokolovskiy, 2023: Dinamika passivnoj primesi v poverhnostnom i podpoverhnostnom sloyah vo vneshnem deformacionnom pole nad podvodnoj vozvyshennost’yu v okeane (Dynamics of passive admixture in surface and subsurface external deformation field above an ocean guyot). Vestnik Moskovskogo universiteta. Seriya 3: Fizika. Astronomiya, 3, 2330901-1-11, https://doi.org/10.55959/MSU0579-9392.78.2330901.

  30. Taylor, G. I., 1921: Experiments with rotating fluids. Proc. Roy. Soc. Lond. Ser. A, Containing Papers of a Mathematical and Physical Character, 100 (703), 114–121.

  31. Taylor, G. I., 1923: Experiments on the motion of solid bodies in rotating fluids. Proc. Roy. Soc. Lond. Ser. A, Containing Papers of a Mathematical and Physical Character, 104 (725), 213–219.

  32. Zabusky, N. J., M. H. Hughes, and K. V. Roberts, 1979: Contour dynamics for Euler equations in two dimensions. J. Comput. Phys., 30 (1), 96–106.

  33. Zyryanov, V. N., 1995: Topograficheskie vihri v dinamike morskih techenij (Topographic Eddies in the Dynamics of Sea Currents). Moscow, IVP RAN, 240 p.

  34. Zyryanov, V. N., 2006: Topographic eddies in a stratified ocean. Reg. Chaot. Dyn., 11 (4), 491–521.

已出版
2025-09-21
栏目
Ocean physics and climate