COMPARISON OF THE PECHORA SEA BENTHIC COMMUNITIES’ TROPHIC STRUCTURE ON CLAY-SILT AND SANDY-SHELL SUBSTRATE

  • A. K. Zalota Shirshov Institute of Oceanology, Russian Academy of Sciences
  • P. Yu. Dgebuadze A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
  • A. A. Gebruk The University of Edinburgh
  • O. P. Konovalova Lomonosov Moscow State University, Marine Research Center
  • N. V. Shabalin Lomonosov Moscow State University, Marine Research Center
DOI 10.29006/1564-2291.JOR-2025.53(1).6
Keywords Pechora Sea, trophic structure, benthic communities ecology, stable isotopes analysis

Abstract

Changes in the structure of benthic communities are increasingly observed in the modern global environment. They are driven by natural processes and anthropogenic factors, including climate change. The shallow Pechora Sea, characterized by high freshwater discharge, is particularly sensitive to such changes. Biodiversity and biomass of benthic organisms are traditionally used to describe communities, but changes at the level of trophic relationships, which underlie ecosystem interactions, play a key role in assessing ecosystem resilience. In this study, we investigated the trophic structure of two types of benthic communities in the feeding area of a recovering Atlantic walrus (Odobenus rosmarus rosmarus) population near Vaigach Island. Based on literature data and analysis of stable carbon and nitrogen isotopes, the trophic position and feeding type of mass species of macro- and megabenthos invertebrates were determined. Deposit-feeding holothurians and suspension-feeding bivalve molluscs dominated the sandy-shell substrate. In silty substrates, there is a higher level of organic sediment, a greater biomass of benthic organisms, a greater diversity of deposit-feeders, and the predominance of suspension-feeding bivalves. Large mobile predators, including the alien snow crab, are present at both stations and are competitors of walruses for food resources, predominantly mollusks. The obtained results provide a scientific basis for further studies of the trophic structure of the Pechora Sea, including monitoring of food chain dynamics and assessment of ecosystem stability under conditions of ongoing environmental changes.

References


  1. Agnalt, A.-L., V. Pavlov, K. E Jørstad, E. Farestveit, and J. Sundet, 2011: The Snow Crab, Chionoecetes opilio (Decapoda, Majoidea, Oregoniidae) in the Barents Sea. Spring. Ser. Invas. Ecol., 6, 283–300.

  2. Anufriyev, V. V., A. C. Glotov, and S. A. Zolotoy, 2017: Monitoring atlanticheskogo morzha (Odobenus rosmarus rosmarus) v gosudarstvennom prirodnom zapovednike “Nenetskiy”. Trudy KarNTS RAN, 4, 15–25.

  3. Bauch, D., P. Schlosser, and R. G. Fairbanks, 1995: Freshwater balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of H218O. Progr. Oceanogr., 35 (1), 53–80.

  4. Beesley, P. L., G. J. B. Ross, and A. Wells, 1998: Mollusca – The Southern Synthesis. Melbourne, CSIRO Publishing, 1234 p.

  5. Berge, J., P. E. Renaud, K. Eiane, B. Gulliksen, F. R. Cottier, Ø. Varpe, and T. Brattegard, 2009: Changes in the decapod fauna of an Arctic fjord during the last 100 years (1908–2007). Pol. Biol., 32, 953–961.

  6. Bluhm, B. A., K. Iken, S. Mincks Hardy, B. I. Sirenko, and B. A. Holladay, 2009: Community structure of epibenthic megafauna in the Chukchi Sea. Aquat. Biol., 7, 269–293.

  7. Bremner, J., S. Rogers, and C. Frid, 2006: Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Indic., 6, 609–622.

  8. Bridier, G., F. Olivier, L. Chauvaud, M. K. Sejr, and J. Grall, 2021: Food source diversity, trophic plasticity, and omnivory enhance the stability of a shallow benthic food web from a high-Arctic fjord exposed to freshwater inputs. Limnol. Oceanogr., 66 (Suppl. S1), S259–S272, https://doi.org/10.1002/lno.11688.

  9. Brusca, R. C. and G. J. Brusca, 2003: Invertebrates. 2nd Ed. Massachussets, Sinauer Associates, Sunderland, 936 p.

  10. Burukovskiy, R. N., 1982: Pitaniye i pishchevyye vzaimootnosheniya krevetok. Kaliningrad, KGTU, 407 p.

  11. Burukovsky, R. N., V. L. Syomin, A. K. Zalota, M. I. Simakov, and V. A. Spiridonov, 2021: The Food Spectra of Snow Crabs (Chionoecetes opilio O. Fabricius, 1788) (Decapoda, Oregonidae), Non-Indigenous Species of the Kara Sea. Oceanology, 61 (6), 964–975.

  12. Chuchukalo, V. I., V. A. Nadtochiy, P. A. Fedotov, and R. G. Bezrukov, 2011: Pitaniye i nekotoryye cherty biologii kraba-striguna opilio (Chionoecetes opilio) v Chukotskom more. Izv. TINRO, 167, 197–206.

  13. Dahle, S., S. G. Denisoenko, N. V. Denisenko, and S. J. Cochrane, 1998: Benthic fauna in the Pechora Sea. Sarsia, 83, 183–210.

  14. David, P., E. Thébault, O. Anneville, P. F. Duyck, E. Chapuis, and N. Loeuille, 2017: Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res., 56, 1–60.

  15. DeNiro, M. J. and S. Epstein, 1978: Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta., 42, 495–506, https://doi.org/10.1016/0016-7037(78)90199-0.

  16. Denisenko, S., N. Denisenko, K. Lehtonen, A. Andersin, and A. Laine, 2003: Macrozoobenthos of the Pechora Sea (SE Barents Sea): Community structure and spatial distribution in relation to environmental conditions. Mar. Ecol. Progr. Ser., 258, 109–123, https://doi.org/10.3354/meps258109.

  17. Denisenko, S. G., N. V. Denisenko, E. M. Chaban, S. Y. Gagaev, V. V. Petryashov, N. E. Zhuravleva, and A. A. Sukhotin, 2019: The current status of the macrozoobenthos around the Atlantic walrus haul-outs in the Pechora Sea (SE Barents Sea). Pol. Biol., 42, 1703–1717.

  18. Divine, L., K. Iken, and B. Bluhm, 2015: Regional benthic food web structure on the Alaska Beaufort Sea shelf. Mar. Ecol. Progr. Ser., 531, 15–32, https://doi.org/10.3354/meps11340.

  19. Divine, L. M., B. A. Bluhm, F. J. Mueter, and K. Iken, 2017: Diet analysis of Alaska Arctic snow crabs (Chionoecetes opilio) using stomach contents and δ13C and δ15N stable isotopes. Deep Sea Res. Part II: Top. Stud. Oceanogr., 135, 124–136.

  20. Dobrovol’skiy, A. D. and B. S. Zalogin, 1982: Morya SSSR. Moscow, Izdatelstvo MGU, 192 p.

  21. Dolgov, A. V., A. N. Benzik, and O. Yu. Chetyrkina, 2014: Pitaniye nepromyslovykh ryb i ikh rol’ v produktivnosti ekosistemy Karskogo moray. Trudy VNIRO, 152, 190–208.

  22. Dunton, K. H., S. V. Schonberg, and L. W. Cooper, 2012: Food Web Structure of the Alaskan Nearshore Shelf and Estuarine Lagoons of the Beaufort Sea. Estuar. Coasts., 35, 416–435.

  23. Elton, C., 1927: Animal Ecology. New York, Macmillan Co., 72 p.

  24. Fauchald, K. and P. Jumars, 1979: The diet of worms: a study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev., 17, 193–284.

  25. Feller, R. J., 2006: Weak meiofaunal trophic linkages in Crangon crangon and Carcinus maenus. J. Exper. Mar. Biol. Ecol., 330 (1), 274–283, https://doi.org/10.1016/j.jembe.2005.12.033.

  26. Fish, J. and S. Fish, 2011: A student’s Guide to the Seashore. Cambridge, Cambridge University Press, 2011. 527 p.

  27. Froese, R. and D. Paul, FishBase. World wide web electronic publication // http://www.fishbase.org.(last accessed in 09.12.2024).

  28. Gebruk, A., P. Mikhaylyukova, M. Mardashova, V. Semenova, L.-A. Henry, N. Shabalin, B. E. Narayanaswamy, and V. Mokievsky, 2021a: Integrated study of benthic foraging resources for Atlantic walrus (Odobenus rosmarus rosmarus) in the Pechora Sea, south-eastern Barents Sea. Aquat. Conserv. Mar. Freshw. Ecosys, 31 (1), 112–125, https://doi.org/10.1002/aqc.3418.

  29. Gebruk, A., A. K. Zalota, P. Dgebuadze, Yu. Ermilova, V. A. Spiridonov, N. Shabalin,
    L.‑A. Henry, S. F. Henley, and V. O. Mokievsky, 2021b: Trophic niches of benthic crustaceans in the Pechora Sea suggest that the invasive snow crab Chionoecetes opilio could be an important competitor. Pol. Biol., 44, 57–71, https://doi.org/10.1007/s00300-020-02775-3.

  30. Graeve, M., G. Kattner, and D. Piepenburg, 1997: Lipids in Arctic benthos: Does the fatty acid and alcohol composition reflect feeding and trophic interactions? Pol. Biol., 18, 53–61, https://doi.org/10.1007/s003000050158.

  31. Graham, A., 1988: Molluscs: Prosobranch and Pyramidellid Gastropods. Leiden, Brill, 662 p.

  32. Gray, B. P., B. L. Norcross, A. L. Blanchard, A. H. Beaudreu, and A. C. Seitz, 2016: Variability in the summer diets of juvenile polar cod (Boreogadus saida) in the northeastern Chukchi and western Beaufort Seas. Pol. Biol., 39, 1069–1080.

  33. Harris, C. M., N. D. McTigue, J. W. McClelland, and K. H. Dunton, 2018: Do high Arctic coastal food webs rely on a terrestrial carbon subsidy? Food Webs, 15, P. e00081. https://doi.org/10.1016/j.fooweb.2018.

  34. Hartmann-Schröder, G., 1996: Annelida, Borstenwürmer, Polychaeta. Jena, Gustav Fischer Verlag, 648 p.

  35. Huber, M., 2010: Compendium of Bivalves. Hackenheim, ConchBooks, 901 p.

  36. Hussey, N. E., M. A. MacNeil, B. C. McMeans, J. A. Olin, S. F. J. Dudley, G. Cliff, S. P. Wintner, S. T. Fennessy, and A. T. Fisk, 2014: Rescaling the trophic structure of marine food webs. Ecol. Lett., 17, 239–250, https://doi.org/10.1111/ele.12226.

  37. Iken, K., B. Bluhm, and K. Dunton, 2010: Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep Sea Res. Part II Top. Stud. Oceanogr., 57 (1–2), 71–85, https://doi.org/10.1016/j.dsr2.2009.08.007.

  38. IUCN // https://www.iucnredlist.org/.(last seen in 09.12.2024).

  39. Jacobs, P., K. Troost, R. Riegman, and J. van der Meer, 2015: Length and weight-dependent clearance rates of juvenile mussels (Mytilus edulis) on various planktonic prey items. Helgol. Mar. Res., 69, 101–112.

  40. Jørgensen, L. L. and V. Spiridonov, 2013: Effect from the king-and snow crab on Barents Sea benthos. Results and conclusions from the Norwegian-Russian Workshop in Tromsø. Fisken og Havet nr. 8/2013. Norway, Bergen, Institute of Marine Research, 41 p.

  41. Jumars, P., K. M. Dorgan, and S. M. Lindsay, 2015: Diet of Worms Emended: An Update of Polychaete Feeding Guilds. Ann. Rev. Mar. Sci., 7, 497–520.

  42. Kędra, M., S. Gromisz, R. Jaskuła, J. Legezynska, B. Maciejewska, E. Malec, A. Opanowski, K. Ostrowska, M. Włodarska-Kowalczuk, and J. Węsławski, 2010: Soft bottom macrofauna of an All Taxa Biodiversity Site: Hornsund (77○N, Svalbard). Pol. Pol. Res., 31, 309–326.

  43. Kędra, M., L. W. Cooper, M. J. Silberberger, M. Zhang, D. Biasatti, and J. M. Grebmeier, 2021: Organic carbon source variability in Arctic bivalves as deduced from the compound specific carbon isotopic composition of amino acids. J. Mar. Syst., 219, 103547, https://doi.org/10.1016/j.jmarsys.2021.103547.

  44. Kędra, M., K. Kuliński, W. Walkusz, and J. Legezynska, 2012: The shallow benthic food web structure in the high Arctic does not follow seasonal changes in the surrounding environment. Estuar. Coast. Shelf Sci., 114, 183–191.

  45. Kiselev, A. D. and A. K. Zalota, 2024: Changes in the Diet of an Invasive Predatory Crab, Chionoecetes opilio, in the Degrading Benthic Community of an Arctic Fjord. Biology, 13, 781, https://doi.org/10.3390/biology13100781.

  46. Kokarev, V. N., A. A. Vedenin, A. B. Basin, and A. I. Azovsky, 2017: Taxonomic and functional patterns of macrobenthic communities on a high-arctic shelf: A case study from the Laptev Sea. J. Sea Res., 129, 61–69, https://doi.org/10.1016/j.seares.2017.08.011.

  47. Komarova, I. V., 1939: Pitaniye kambaly-yersha (Hippoglossoides platessoides) v Barentsevom more v svyazi s kormovymi resursami. Trudy VNIRO, 4, 267–320.

  48. Kuzmin, S., S. Akhtarin, and D. Meni, 1999: The first findings of the snow crab Chionoecetes opilio (Decapoda, Majiidae) in the Barents Sea. Can. Trans. Fish Aquat. Sci., 5667, 1–5.

  49. Laidre, K. L., I. Stirling, L. F. Lowry, Ø. Wiig, M. P. Heide-Jørgensen, and S. H. Ferguson, 2008: Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Applic., 18, 97–125, https://doi.org/10.1890/06-0546.1.

  50. Le Loc’h, F., C. Hily, and J. Grall, 2008: Benthic community and food web structure on the continental shelf of the Bay of Biscay (North Eastern Atlantic) revealed by stable isotopes analysis. J. Mar. Syst., 72, 17–34, https://doi.org/10.1016/j.jmarsys.2007.05.011.

  51. Lindeman, R. L., 1942: The trophic-dynamic aspect of ecology. Ecol., 23, 399–418.

  52. Link, H., D. Piepenburg, and P. Archambault, 2013: Are hotspots always hotspots? The relationship between diversity, resource and ecosystem functions in the Arctic. PLoS ONE, 8, P. e74077.

  53. Lopez, G. R. and J. S. Levinton, 1987: Ecology of deposit-feeding animals in marine sediments. Q. Rev. Biol., 62, 235–260.

  54. Lydersen, C., V. I. Chernook, D. M. Glazov, I. S. Trukhanova, and K. M. Kovacs, 2012: Aerial survey of Atlantic walruses (Odobenus rosmarus rosmarus) in the Pechora Sea, August 2011. Pol. Biol., 35, 1555–1562, https://doi.org/10.1007/s00300-012-1195-2.

  55. Macdonald, T. A., B. J. Burd, V. I. Macdonald, and A. van Roodeselaar, 2010: Taxonomic and feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, British Columbia. Canad. Techn. Rep. Fish. Aquat. Sci.; Fish. Oceans Can., 2874, 63.

  56. McGovern, M., J. Berge, B. Szymczycha, J. Weęsławski, and P. Renaud, 2018: Hyperbenthic food-web structure in an Arctic fjord. Mar. Ecol. Prog. Ser., 603, 29–46, https://doi.org/10.3354/meps12713.

  57. McMahon, K. W., W. G. Ambrose, M. J. Reynolds, B. J. Johnson, A. Whiting, and L. M. Clough, 2021: Arctic lagoon and nearshore food webs: Relative contributions of terrestrial organic matter, phytoplankton, and phytobenthos vary with consumer foraging dynamics. Estuar. Coast. Shelf Sci., 257, 107388, https://doi.org/10.1016/j.ecss.2021.107388.

  58. McTigue, N. D. and K. H. Dunton, 2017: Trophodynamics of the Hanna shoal ecosystem (Chukchi Sea, Alaska): Connecting multiple end-members to a rich food web. Deep Sea Res. II Top. Stud. Oceanogr., 144, 175–189.

  59. Minagawa, M. and E. Wada, 1984: Stepwise enrichment of 15N along foodchains—Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta., 48, 1135–1140.

  60. Mohan, S. D., T. L. Connelly, C. M. Harris, K. H. Dunton, and J. W. McClelland, 2016: Seasonal trophic linkages in Arctic marine invertebrates assessed via fatty acids and compound-specific stable isotopes. Ecosphere, 7, P. e01429.

  61. Morata, N. and E. Michaud, 2013: Impact of early food input on the Arctic benthos activities during the polar night. Pol. Biol., 38, 99–114.

  62. Mullowney, D., C. Morris, E. Dawe, I. Zagorsky, and S. Goryanina, 2018: Dynamics of snow crab (Chionoecetes opilio) movement and migration along the Newfoundland and Labrador and Eastern Barents Sea continental shelves. Rev. Fish. Biol. Fish., 28 (2), 435–459.

  63. Naumov, A. D., O. A. Skarlato, and V. V. Fedyakov, 1987: Klass Bivalvia. Mollyuski Belogo morya. Opredeliteli po faune SSSR, izdavayemyye Zoologicheskim institutom, 151, 205–258.

  64. North, C. A., J. R. Lovvorn, J. M. Kolts, M. L. Brooks, L. W. Cooper, and J. M. Grebmeier, 2014: Deposit-feeder diets in the Bering Sea: Potential effects of climatic loss of sea ice-related microalgal blooms. Ecol. Appl., 24, 1525–1542.

  65. Nosova, T. B., 2016: Pitaniye kraba-striguna opilio Chionoecetes opilio v Karskom more v letniy period 2014 g. Morsk. biol. issled. dostizh. persp., 227–230.

  66. Oh, C., R. Hartnoll, and R. Nash, 2001: Feeding ecology of the common shrimp Crangon crangon in Port Erin Bay, Isle of Man, Irish Sea. Mar. Ecol. Progr. Ser., 214, 211–223, https://doi.org/10.3354/meps214211.

  67. Parrish, C. C., Z. Yang, A. Lau, and R. J. Thompson, 1996: Lipid composition of Yoldia hyperborea (Protobranchia), Nephthys ciliata (Nephthyidae) and Artacama proboscidea (Terebellidae) living at sub-zero temperatures. Compar. Biochem. Physiol. Part B: Biochem. Molec. Biol., 114 (1), 59–67.

  68. Pavlov, V. A., 2007: Pitaniye kraba-striguna opilio Chionoecetes opilio (Fabricius, 1788) v Barentsevom more. Trudy VNIRO, 147, 99–107.

  69. Peterson, B. J. and B. Fry, 1987: Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18, 293–320.

  70. Post, D. M., 2002: Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecol., 83, 703–718.

  71. Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi, and C. G. Montana, 2007: Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecol., 152, 179–189.

  72. Prokopchuk, I. P., 2017: Pitaniye sayki Boreogadus saida v Karskom more. Voprosy ikhtiologii, 57 (4), 445–456.

  73. Reid, R. G. B. and A. Reid, 1969: Feeding processes of members of the genus Macoma (Mollusca: Bivalvia). Canad. J. Zool., 47 (4), 649–657.

  74. Renz, J., M. Powilleit, M. Gogina, M. Zettler, C. Morys, and S. Forster, 2018: Community bioirrigation potential (BIPc), an index to quantify the potential for solute exchange at the sediment-water interface. Mar. Envir. Res., 141, 214–224.

  75. Rooney, N., K. S. McCann, and J. C. Moore, 2008: A landscape theory for food web architecture. Ecol. Lett., 11, 867–881.

  76. Roy, V., K. Iken, M. Gosselin, J.-É. Tremblay, S. Bélanger, and P. Archambault, 2015: Benthic faunal assimilation pathways and depth-related changes in food-web structure across the Canadian Arctic. Deep Sea Res. Part I: Oceanogr. Res. Pap., 102, 55–71, https://doi.org/10.1016/j.dsr.2015.04.009.

  77. Saint-Béat, B., D. Baird, H. Asmus, R. Asmus, C. Bacher, S. R. Pacella, G. A. Johnson, V. David, A. F. Vézina, and N. Niquil, 2015: Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A rev. Ecol. Indic., 52, 458–471.

  78. Saleuddin, A. S. M., 1965: The mode of life and functional anatomy of Astarte spp. (Eulamellibranchia). Proc. Malacol. Soc., 36, 229.

  79. Semenova, V. S., A. N. Boltunov, and V. V. Nikiforov, 2015: Izucheniye i sokhraneniye atlanticheskogo morzha v yugo-vostochnoy chasti Barentseva morya i sopredel’nykh rayonakh Karskogo moray. Rezul’taty issledovaniy 2011–2014 gg. Murmansk, WWF, 82 p.

  80. Semenova, V., A. Boltunov, and V. Nikiforov, 2019: Key habitats and movement patterns of Pechora Sea walruses studied using satellite telemetry. Pol. Biol. 42, 1763–1774.

  81. Serratos, C., 2015: Spatial and temporal patterns of epibenthic community and food web structure in the Chukchi Sea between 2004–2012. Master thesis, University of Alaska Fairbanks.

  82. Shojaei, M., 2016: Developments in German Bight benthic ecology driven by climate change and anthropogenic utilization. PhD Thesis. University Bremen, Germany.

  83. Smith, B., E. Cabot, and R. Foreman, 1985: Seaweed detritus versus benthic diatoms as important food resources for two dominant subtidal gastropods. J. Exper. Mar. Biol. Ecol., 92, 143–156.

  84. Sokolova, M. N., 1972: Trophic structure of deep-sea macrobenthos. Mar. Biol., 16, 1–12.

  85. Sokolov, K. M., V. A. Pavlov, and N. A. Strelkova et al., 2016: Krab-strigun opilio Chionoecetes opilio v Barentsevom i Karskom moryakh. Moscow, Izd-vo PINRO, 242 p.

  86. Sokołowski, A., A. Szczepańska, P. Richard, M. Kędra, M. Wołowicz, and J. M. Węsławski, 2014: Trophic structure of the macrobenthic community of Hornsund, Spitsbergen, based on the determination of stable carbon and nitrogen isotopic signatures. Pol. Biol., 37, 1247–1260.

  87. Stead, R. and R. Thompson, 2006: The influence of an intermittent food supply on the feeding behaviour of Yoldia hyperborea (Bivalvia: Nuculanidae). J. Exper. Mar. Biol. Ecol., 332, 37–48.

  88. Stoker, S. W., 1978: Benthic invertebrate macrofauna of the Eastern continental shelf of the Bering and Chukchi Seas. Doctoral thesis, University of Alaska, 259 p.

  89. Sukhotin, A. A., Y. V. Krasnov, and K. V. Galaktionov, 2008: Subtidal populations of the blue mussel Mytilus edulis as key determinants of waterfowl flocks in the southeastern Barents Sea. Polar Biol., 31 (11), 1357–1363.

  90. Sun, M., L. M. Clough, M. L. Carroll, J. Dai, W. G. Ambrose, and G. R. Lopez, 2009: Different responses of two common Arctic macrobenthic species (Macoma balthica and Monoporeia affinis) to phytoplankton and ice algae: Will climate change impacts be species specific? J. Exper. Mar. Biol. Ecol., 376, 110–121.

  91. Tamelander, T., P. Renaud, H. Hop, M. Carroll, Jr W. G. Ambrose, and K. Hobson, 2006: Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope measurements. Mar. Ecol. Progr. Ser., 310, 33–46.

  92. Tarverdiyeva, M. I., 1976: Pitaniye kamchatskogo kraba Paralithodes camtschatica (Tilesius) i krabov-strigunov Chionoecetes bairdi Rathbum i C. opilio (Fabricius) v yugo-vostochnoy chasti Beringova moray. Biol. morya, 1, 41–48.

  93. Udalov, A. A., I. M. Anisimov, A. B. Basin, G. V. Borisenko, S. V. Galkin, V. L. Syomin, S. A. Shchuka, M. I. Simakov, A. K. Zalota, and M. V. Chikina, 2024: Changes in benthic communities in Blagopoluchiya Bay (Novaya Zemlya, Kara Sea): The influence of the snow crab. Biol. Inv., 26, 3455–3473.

  94. Vander Zanden, M. J. and J. B. Rasmussen, 1996: A trophic position model of pelagic food webs: Impact on contaminant biomagnification in lake trout. Ecol. Monogr., 66, 451–477.

  95. Walker, K. R. and R. K. Bambach, 1974: Feeding by benthic invertebrates: Classification and terminology for paleoecological analysis. Lethaia, 7, 67–78.

  96. Weslawski, J. M., S. Kwasniewski, L. Stempniewicz, and K. Blachowiak-Samolyk, 2006: Biodiversity and energy transfer to top trophic levels in two contrasting Arctic fjords. Pol. Pol. Res., 27, 259–278.

  97. Wiig, Ø., E. W. Born, and R. E. A. Stewart, 2014: Management of Atlantic walrus (Odobenus rosmarus rosmarus) in the arctic Atlantic. NAMMCO Scient. Public, 9, 315–341, https://doi.org/10.7557/3.2855.

  98. Whitehead, P. J. P., 1985: FAO Species Catalogue. Vol. 7. Clupeoid fishes of the world (suborder Clupeoidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. FAO Fish. Synop., 125 (7/1), 1–303.

  99. Włodarska-Kowalczuk, M., M. Aune, L. N. Michel, A. Zaborska, and J. Legeżyńska, 2019: Is the trophic diversity of marine benthic consumers decoupled from taxonomic and functional trait diversity? Isotopic niches of Arctic communities. Limnol. Oceanogr., 64, 2140–2151, https://doi.org/10.1002/lno.11174.

  100. Zakharov, D. V., I. E. Manushin, T. B. Nosova, N. A. Strelkova, and V. A. Pavlov, 2021: Diet of snow crab in the Barents Sea and macrozoobenthic communities in its area of distribution. ICES J. Mar. Sci., 78 (2), 545–556, https://doi.org/10.1093/icesjms/fsaa132.

  101. Zalota, A. K., P. Yu. Dgebuadze, A. D. Kiselev, M. V. Chikina, A. A. Udalov, D. V. Kondar, A. V. Mishin, and S. M. Tsurikov, 2024: Trophic position stability of benthic organisms in a changing food web of an Arctic fjord under the pressure of an invasive predatory snow crab, Chionoecetes opilio. Biology, 13 (11), 874, https://doi.org/10.3390/biology13110874.

  102. Zinkann, A.-C., M. J. Wooller, D. O’Brien, and K. Iken, 2021: Does feeding type matter? Contribution of organic matter sources to benthic invertebrates on the Arctic Chukchi Sea shelf. Food Webs, 29, P. e00205, https://doi.org/10.1016/j.fooweb.

Published
2025-03-25
Section
Ecology of seas and oceans