СОВРЕМЕННЫЕ СРЕДСТВА И МЕТОДЫ МОНИТОРИНГА ПЛАВАЮЩЕГО МОРСКОГО МАКРОМУСОРА И ВНЕДРЕНИЕ ТЕХНОЛОГИЙ МАШИННОГО ОБУЧЕНИЯ
Аннотация
Загрязнение мусором морских акваторий на сегодняшний день признано проблемой мирового масштаба на уровне всех международных организаций и конвенций, отвечающих за сохранность океанов и морей. В настоящем обзоре рассматриваются современные методы и средства обнаружения морского макромусора, плавающего на поверхности моря. Задача обнаружения морского мусора на поверхности воды осложняется большим разнообразием объектов, разной степенью их деградации, часто их малыми размерами, частичным погружением в подповерхностный слой, бесцветностью, слиянием с водной поверхностью, затрудненными условиями наблюдений. Основные подходы сбора данных о морском плавающем мусоре на сегодня включают визуальные наблюдения (с морских судов, самолетов), траления, а также дистанционное зондирование, особенно с использованием радиолокационных систем. В задаче обработки собранных данных в последнее десятилетие значительно продвинулись вперед методы глубокого обучения, что позволило вывести распознавание и идентификацию мусора на новый уровень благодаря различным модификациям искусственных нейронных сетей. В обзоре мы анализируем ключевые исследования по представленной теме и подчеркиваем достижения и перспективы применения искусственного интеллекта для улучшения методов обнаружения и классификации морского мусора размером от 2.5 см.
Литература
- Гвишиани А. Д., Добровольский М. Н., Дзеранов Б. В., Дзебоев Б. А. Большие данные в геофизике и других науках о Земле // Физика Земли. 2022. № 1. C. 3–34. https://doi.org/10.31857/S0002333722010033.
- Погожева М. П., Якушев Е. В., Терский П. Н., Глазов Д. М., Аляутдинов В. А., Коршенко А. Н., Ханке Г., Семилетов И. П. Оценка загрязнения Баренцева моря плавающим морским мусором по данным судовых наблюдений в 2019 г. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332. № 2. С. 87–96. https://doi.org/10.18799/24131830/2021/02/3045.
- Acuña-Ruz T., Uribe D., Taylor R., Amezquita L., Guzman M. C., Merrill J., Martinez P., Voisin L., Cristian M. B. Anthropogenic marine debris over beaches: Spectral characterization for remote sensing applications // Remote Sensing of Environment. 2018. Vol. 217. P. 309–322. https://doi.org/10.1016/j.rse.2018.08.008.
- Aliani S., Molcard A. Hitch-hiking on floating marine debris: macrobenthic species in the western Mediterranean Sea // Hydrobiology. 2003. Vol. 503. P. 59, 67. https://doi.org/10.1023/B:HYDR.0000008480.95045.26.
- Andrady A. L. Persistence of plastic litter in the oceans // Marine anthropogenic litter. 2015. P. 57–72. https://doi.org/10.1007/978-3-319-16510-3_3.
- Arctic Monitoring and Assessment Programme (AMAP). AMAP Litter and Microplastics Monitoring Guidelines. Version 1.0 // Arctic Monitoring and Assessment Programme (AMAP). 2021. P. 1–257. http://dx.doi.org/10.25607/OBP-1667.
- Arthur C., Murphy P., Opfer S., Morishige C. Bringing together the marine debris community using “ships of opportunity” and a Federal marine debris information clearinghouse // Technical Proceedings of the Fifth International Marine Debris Conference. 2009. NOAA Technical Memorandum NOS-OR&R-38. P. 449–453. https://doi.org/10.2788/92438.
- Barboza L. G. A., Vethaak A. D., Lavorante B. R., Lundebye A. K., Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health // Marine pollution bulletin. 2018. Vol. 133. P. 336–348. https://doi.org/10.1016/j.marpolbul.2018.05.047.
- Black Sea Commission. Black Sea Marine Litter Regional Action Plan // Black Sea Commission Publications. 2018. P. 1–30.
- Bolya D., Zhou C., Xiao F., Lee Y. J. Yolact: Real-time instance segmentation // Proc. of the IEEE/CVF International Conference on Computer Vision. 2019. P. 9157–9166. https://doi.org/10.1109/ICCV.2019.00925.
- Boerger C. M., Lattin G. L., Moore S. L., Moore C. J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre // Marine Pollution Bulletin. 2010. Vol. 60. No. 12. P. 2275–2278. https://doi.org/10.1016/j.marpolbul.2010.08.007.
- Booth H., Ma W., Karakuş O. High-precision density mapping of marine debris and floating plastics via satellite imagery // Sci. Rep. 2023. Vol. 13. No. 6822. https://doi.org/10.1038/s41598-023-33612-2.
- Carney Almroth B. C., Eggert H. Marine Plastic Pollution: Sources, Impacts, and Policy Issues // Review of Environmental Economics and Policy. 2019. Vol. 13 (2). P. 317–326. https://doi.org/10.1093/reep/rez012.
- de Vries R., Egger M., Mani T., Lebreton L. Quantifying Floating Plastic Debris at Sea Using Vessel-Based Optical Data and Artificial Intelligence // Remote Sens. 2021. Vol. 13. No. 3401. https://doi.org/10.3390/rs13173401.
- de Vries R. Using AI to Monitor Plastic Density in the Ocean // The Ocean Clean Up Project. https://theoceancleanup.com.2022.
- Derraik J. G. B. The pollution of the marine environment by plastic debris: a review // Marine Pollution Bulletin. 2002. Vol. 44 (9). P. 842–852. https://doi.org/10.1016/S0025-326X(02)00220-5.
- Domènech F., Aznar F. J., Raga J. A., Tomás J. Two decades of monitoring marine debris ingestion in loggerhead sea turtle, Caretta caretta, from the western Mediterranean // Environmental Pollution. 2019. Vol. 244. P. 367–378. https://doi.org/10.1016/j.envpol.2018.10.047.
- Ershova A., Vorotnichenko E., Gordeeva S., Ruzhnikova N., Trofimova A. Beach litter composition, distribution patterns and annual budgets on Novaya Zemlya archipelago, Russian Arctic // Marine Pollution Bulletin. 2024. Vol. 204. No. 116517. https://doi.org/10.1016/j.marpolbul.2024.116517.
- Fallati L., Polidori A., Salvatore C., Saponari L., Savini A., Galli A. Anthropogenic marine debris assessment with unmanned aerial vehicle imagery and deep learning: a case study along the beaches of the Republic of Maldives // Sci. Total Environ. 2019. Vol. 693. No. 133581. https://doi.org/10.1016/j.scitotenv.2019.133581.
- Fleet D., Vlachogianni T., Hanke G. A joint list of litter categories for marine macrolitter monitoring Manual for the application of the classification system // JRC Technical Report. 2021. https://doi.org/10.2760/127473.
- Fulton M., Hong J., Islam M. J., Sattar J. Robotic detection of marine litter using deep visual detection models // International Conference on Robotics and Automation (ICRA). 2019. P. 5752–5758. https://doi.org/10.1109/ICRA.2019.8793975.
- Galgani F., Hanke G., Maes T. Global Distribution, Composition and Abundance of Marine Litter // Marine Anthropogenic Litter. 2015. Heidelberg New York Dordrecht London: Springer International Publishing. P. 29–56. JRC88794. https://doi.org/10.1007/978-3-319-16510-3_2.
- Galgani F., Pastor R. O. S., Ronchi F., Tallec K., Fischer E., Matiddi M., Anastasopoulou A., Andresmaa E., Angiolillo M., Bakker Paiva M., Booth A. M., Buhhalko N., Cadiou B., Claro F., Consoli P., Darmon G., Deudero S., Fleet D., Fortibuoni T., Fossi M.C., Gago J., Gerigny O., Giorgetti A., Gonzalez Fernandez D., Guse N., Haseler M., Ioakeimidis C., Kammann U., Kühn S., Lacroix C., Lips I., Loza A. L., Molina Jack M. E., Noren K., Papadoyannakis M., Pragnell-Raasch H., Rindorf A., Ruiz M., Setälä O., Schulz M., Schultze M., Silvestri C., Soederberg L., Stoica E., Storr-Paulsen M., Strand J., Valente T., Van Franeker J. A., Van Loon W., Vighi M., Vinci M., Vlachogianni T., Volckaert A., Weie, S., Wenneker B., Werner S., Zeri C., Zorzo P., Hanke G. European Commission: Joint Research Centre, Guidance on the monitoring of marine litter in European seas – An update to improve the harmonised monitoring of marine litter under the Marine Strategy Framework Directive // Publications Office of the European Union. 2023. JRC133594. https://doi.org/10.2760/59137.
- Gall S. C., Thompson R. C. The impact of debris on marine life // Marine Pollution Bulletin. 2015. Vol. 92 (1–2). P. 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041.
- González-Fernández D., Hanke G., Pogojeva M., Machitadze N., Kotelnikova Y., Tretiak I., Savenko O., Bilashvili K., Gelashvili N., Fedorov A., Kulagin D., Terentiev A., Slobodnik J. Floating marine macro litter in the Black Sea: Toward baselines for large scale assessment // Environmental Pollution. 2022. Vol. 309. 119816. ISSN 0269-7491. https://doi.org/10.1016/j.envpol.2022.119816.
- Gregory M. R. Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions // Phil. Trans. R. Soc. B. 2009. Vol. 364. P. 2013–2025. http://doi.org/10.1098/rstb.2008.0265.
- Grøsvik B. E., Prokhorova T., Eriksen E., Krivosheya P., Horneland P. A., Prozorkevich D. Assessment of Marine Litter in the Barents Sea, a Part of the Joint Norwegian–Russian Ecosystem Survey // Frontiers in Marine Science. 2018. No. 5. https://doi.org/10.3389/fmars.2018.00072.
- Hanke G., Piha H. Large-scale monitoring of surface floating marine litter by high resolution imagery // Presentation and extended abstract, 5th International Marine DEBRIS Conference. 2011.
- HELCOM – the Helsinki Convention Organization. HELCOM activities report for the year 2023 // Baltic Sea Environment Proceedings. 2023. No. 196.
- Hu Ch. Remote detection of marine debris using satellite observations in the visible and near infrared spectral range: Challenges and potentials // Remote Sensing of Environment. 2021. Vol. 259 (28). No. 112414. https://doi.org/112414.10.1016/j.rse.2021.112414.
- Iñiguez M. E., Conesa J. A., Fullana A. Marine debris occurrence and treatment: A review // Renewable and Sustainable Energy Reviews. 2016. Vol. 64 (C). P. 394–402. https://doi.org/10.1016/j.rser.2016.06.031.
- Intergovernmental Oceanographic Commission of UNESCO. IOC Strategic Plan for Ocean Data and Information Management (2023–2029) // IOC UNESCO. 2023. P. 1–18. https://doi.org/10.25607/OBP-1377.2.
- Jakovljevic G., Govedarica M., Alvarez-Taboada F. A deep learning model for automatic plastic mapping using unmanned aerial vehicle (uav) data // Remote Sensing. 2020. Vol. 12. No. 1515. https://doi.org/10.3390/rs12091515.
- Jocher G., Stoken A., Borovec J., Changyu L., Hogan A., Diaconu L., Ingham F., Poznanski J., Fang J., Yu L., Wang M., Gupta N., Akhtar O., Rai P. Ultralytics/yolov5: v3.0 // Zenodo. 2020. https://zenodo.org/records/3983579.
- Katsanevakis S. Marine debris, a growing problem: Sources, distribution, composition, and impacts // Open Access Library Journal. 2014. Vol. 1. No. 3.
- Kikaki K., Kakogeorgiou I., Mikeli P., Raitsos D. E., Karantzalos K. MARIDA: A benchmark for marine debris detection from sentinel-2 remote sensing data // PLoS ONE. 2022. Vol. 17 (1). https://doi.org/10.1371/journal.pone.0262247.
- Kylili K., Artusi A., Hadjistassou C. A new paradigm for estimating the prevalence of plastic litter in the marine environment // Marine Pollution Bulletin. 2021. Vol. 173. No. 113127. https://doi.org/10.1016/j.marpolbul.2021.113127.
- Kylili K., Hadjistassou C., Artusi A. An intelligent way for discerning plastics at the shorelines and the seas // Environmental Science and Pollution Research. 2021. Vol. 27. P. 42631–42645. https://doi.org/10.1007/s11356-020-10105-7.
- Kylili K., Kyriakides I., Artusi A., Hadjistassou C. Identifying floating plastic marine debris using a deep learning approach // Environmental Science and Pollution Research. 2019. Vol. 26. P. 17091–17099. https://doi.org/10.1007/s11356-019-05148-4.
- Lebreton L., Slat B., Ferrari F., Sainte-Rose B., Aitken J., Marthouse R., Hajbane S., Cunsolo S., Schwarz A., Levivier A., Noble K., Debeljak P., Maral H., Schoeneich-Argent R., Brambini R., and Reisser J. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 2018. No. 8. Art. 4666. https://doi.org/10.1038/s41598-018-22939-w.
- Lippiatt S., Opfer S., Arthur C. Marine Debris Monitoring and Assessment: Recommendations for Monitoring Debris Trends in the Marine Environment // NOAA Technical Memorandum NOSOR&R-46. 2013. http://dx.doi.org/10.25607/OBP-727.
- Mace T. H. At-sea detection of marine debris: Overview of technologies, processes, issues, and options // Marine Pollution Bulletin. 2012. Vol. 65 (1–3). No. 23–7. https://doi.org/10.1016/j.marpolbul.2011.08.042.
- Maximenko N., Corradi P., Law K., Van S., Garaba S., Lampitt R., Galgani F., Martinez-Vicente V., Goddijn-Murphy L., Veiga J., Thompson R., Maes C., Moller D., Löscher C., Addamo A., Lamson M., Centurioni L., Posth N., Lumpkin R., Vinci M., Martins A., Pieper C., Isobe A., Hanke G., Edwards M., Chubarenko I., Rodriguez E., Aliani S., Arias M., Asner G., Brosich A., Carlton J., Chao Y., Cook A., Cundy A., Galloway T., Giorgetti A., Goni G., Guichoux Y., Haram L., Hardesty B. Toward the Integrated Marine Debris Observing System // Frontiers in Marine Science. 2019. Vol. 6. No. 447. https://doi.org/10.3389/fmars.2019.00447.
- Meijer L. J., van Emmerik T., van der Ent R., Schmidt C., Lebreton L. More Than 1000 Rivers Account for 80 % of Global Riverine Plastic Emissions Into the Ocean // Science Advances. 2021. Vol. 7. eaaz5803. https://doi.org/10.1126/sciadv.aaz5803.
- Moy K., Neilson B., Chung A., Meadows A., Castrence M., Ambagis S., Davidson K. Mapping coastal marine debris using aerial imagery and spatial analysis // Marine Pollution Bulletin, SI: Japanese Tsunami Debris. 2018. Vol. 132. P. 52–59. https://doi.org/10.1016/j.marpolbul.2017.11.045.
- OSPAR Commission. Finding common ground; Towards regional coherence in implementing the Marine Strategy Framework Directive in the North-East Atlantic region through the work of the OSPAR Commission // OSPAR Commission. 2012. https://doi.org/10.1016/j.marpolbul.2018.12.038.
- Pichel W. G., Veenstra T. S., Churnside J. H., Arabini E., Friedman K. S., Foley D. G., Brainard R. E., Kiefer D., Ogle S., Clemente-Colón P., Li X. GhostNet marine debris survey in the Gulf of Alaska—Satellite guidance and aircraft observations // Marine Pollution Bulletin. 2012. Vol. 65. P. 28–41. https://doi.org/10.1016/j.marpolbul.2011.10.009.
- Pogojeva M., Zhdanov I., Berezina A., Lapenkov A., Kosmach D., Osadchiev A., Hanke G., Semiletov I., Yakushev E. Distribution of floating marine macro-litter in relation to oceanographic characteristics in the Russian Arctic Seas // Marine Pollution Bulletin. 2021. Vol. 166. Art. 112201. https://doi.org/10.1016/j.marpolbul.2021.112201.
- Ryan P. G. A simple technique for counting marine debris at sea reveals steep litter gradients between the Straits of Malacca and the Bay of Bengal // Marine Pollution Bulletin. 2010. Vol. 60. P. 128–136. https://doi.org/10.1016/j.marpolbul.2013.01.016.
- Sannigrahi S., Basu B., Basu A. S., Pilla F. Development of automated marine floating plastic detection system using sentinel-2 imagery and machine learning models // Marine Pollution Bulletin. 2022. No. 178. Art. 113527. https://doi.org/10.1016/j.marpolbul.2022.113527.
- Savastano S., Cester I., Perpinya M., Romero L. A first approach to the automatic detection of marine litter in SAR images using artificial intelligence // IEEE International Geoscience and Remote Sensing Symposium IGARSS. 2021. P. 8704–8707. https://doi.org/10.1109/IGARSS47720.2021.9737038.
- Selvam K., Xavier K. A. M., Shivakrishna A., Bhutia T. P., Kamat S., Shenoy L. Abundance, composition and sources of marine debris trawled-up in the fishing grounds along the north-east Arabian coast // Science of The Total Environment. 2021. No. 751. Art. 141771. https://doi.org/10.1016/j.scitotenv.2020.141771.
- Sheavly S. B., Register K. M. Marine debris & plastics: environmental concerns, sources, impacts and solutions // Journal of Polymers and the Environment. 2007. Vol. 15. P. 301–305. https://doi.org/10.1007/s10924-007-0074-3.
- Teng C., Kylili K., Hadjistassou C. Deploying deep learning to estimate the abundance of marine debris from video footage // Marine Pollution Bulletin. 2022. No. 183. Art. 114049. https://doi.org/10.1016/j.marpolbul.2022.114049.
- Topouzelis K., Papageorgiou D., Suaria G., Aliani S. Floating marine litter detection algorithms and techniques using optical remote sensing data: A review // Marine Pollution Bulletin. 2021. No. 170. Art. 112675. https://doi.org/10.1016/j.marpolbul.2021.112675.
- Tran T. L. C., Huang Z.-C., Tseng K.-H., Chou P.-H. Detection of Bottle Marine Debris Using Unmanned Aerial Vehicles and Machine Learning Techniques // Drones. 2022. Vol. 6. No. 401. https://doi.org/10.3390/drones6120401.
- United Nations Environment Programme. Climate Change 1995 – A Report by the Intergovernmental Panel on Climate Change // UNEP. 1995.
- United Nations Environment Programme, Mediterranean Action Plan, Regional Activity Centre for Specially Protected Areas (UNEP-MAP RAC/SPA). Guidelines for the Establishment and Management of Marine Protected Areas for Cetaceans // UNEP. 2011. P. 1–36.
- United Nations Environment Programme. United Nations Environment Programme 2009 Annual Report // UNEP. 2010.
- Valdenegro-Toro M. A. Deep Neural Networks for Marine Debris Detection in Sonar Images // IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). 2019. No. 00417. https://doi.org/10.48550/arXiv.1905.05241.
- van Franeker J. A., Blaize C., Danielsen J., Fairclough K., Gollan J., Guse N., Hansen P. L., Heubeck M., Jensen J.-K., Le Guillou G., Olsen B., Olsen K.-O., Pedersen J., Stienen E. W. M., Turner D. M. Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea // Environmental Pollution. 2011. Vol. 159. No. 10. P. 2609–2615. https://doi.org/10.1016/j.envpol.2011.06.008.
- Veiga J. M., Fleet D., Kinsey S., Nilsson P., Vlachogianni T., Werner S., Galgani F., Thompson R. C., Dagevos J., Gago J., Sobral P., Cronin R. Identifying Sources of Marine Litter // MSFD GES TG Marine Litter Thematic Report; JRC Technical Report. 2016. EUR 28309. https://doi.org/10.2788/018068.
- Vighi M., Ruiz-Orejón L. F., Hanke G. Monitoring of Floating Marine Macro Litter: State of the art and literature overview // MSFD Technical Group on Marine Litter. 2022. JRC129261. https://doi.org/10.2760/78914.
- Watanabe J. I., Shao Y., Miura N. Underwater and airborne monitoring of marine ecosystems and debris // Journal of Applied Remote Sensing. 2019. Vol. 13. No. 1. https://doi.org/10.1117/1.JRS.13.044509.
- Xue B., Huang B., Chen G., Li H., Wei W. Deep-Sea Debris Identification Using Deep Convolutional Neural Networks // IEEE journal of selected topics in applied Earth Observations and remote sensing. 2021. Vol. 14. P. 8909–8921. https://doi.org/10.1109/JSTARS.2021.3107853.
Передача авторских прав происходит на основании лицензионного договора между Автором и Федеральным государственным бюджетным учреждением науки Институт океанологии им. П.П. Ширшова Российской академии наук (ИО РАН)