THE INFLUENCE OF THE LOCALIZATION OF POSITIVE SURFACE TEMPERATURE ANOMALIES IN THE EQUATORIAL PACIFIC OCEAN ON THE PROPAGATION OF WAVE ACTIVITY FROM THE TROPOSPHERE TO THE STRATOSPHERE IN MODEL EXPERIMENTS
Abstract
During an El Niño event an area of intense convection is formed above the area of positive sea surface temperature (SST) anomalies in the equatorial Pacific Ocean. This leads to the formation of a Rossby wave, which propagates from low to high latitudes and can lead to changes in largescale atmospheric circulation in mid-latitudes and, as a consequence, to a change in the vertical wave activity flow from the troposphere to the stratosphere. In recent decades, a new type of El Niño – El Niño Modoki – has been increasingly observed. During El Niño Modoki positive SST anomalies are observed in the central part of the equatorial Pacific Ocean, in contrast to the anomalies of the canonical El Niño, which are observed in the east part. The paper shows differences in the nature of the propagation of wave activity in model experiments with SST anomalies located in areas corresponding to the events of the canonical El Niño (Nino 3 region) and El Niño Modoki (Nino 4 region). It was found that, with comparable amplitudes of SST anomalies, the stratospheric polar vortex is more weakened when the localization of the anomalies corresponds to the El Niño Modoki phenomenon. Statistically significant differences in the weakening of the intensity of the stratospheric polar vortex between experiments are observed at the beginning of the extended winter period (November–December) and in spring (March– April). When the anomalies are located in the central part of the equatorial Pacific Ocean, a doubling of the frequency of final sudden stratospheric warmings (SSWs) is observed compared to the experiment where the anomalies correspond to the localization of the canonical El Niño. The more frequent occurrence of SSWs, both final and intraseasonal, in the El Niño Modoki experiment compared to the canonical El Niño is explained by an increase in the meridional component of the three-dimensional flux of wave activity in case of more westerly position of the SST anomaly. This increase is recorded both immediately before the SSW and throughout the winter period (December–February).
References
- Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans, 112 (С11).
- Baldwin, M. P. and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.
- Baldwin, M. P., M. Dameris, and T. G. Shepherd, 2007: How will the stratosphere affect climate change? Science, 316, 1576–1577.
- Bekoryukov, V. I., I. V. Bugaeva, G. R. Zakharov, B. M. Kiryushov, G. M. Kruchenitsky, and D. A. Tarasenko, 1996: On the contribution of dynamic processes to the formation of anomalously low values of total ozone content in the Northern Hemisphere. Atmosphere and Ocean Optics, 9 (9), 1233–1242.
- Butler, A. H. et al., 2017: A sudden stratospheric warming compendium. Earth System Science Data, 9 (1), 63–76.
- Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bulletin of the American Meteorological Society, 96 (11), 1913–1928.
- Charlton, A. J. and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. Journal of Climate, 20 (3), 449–469.
- Domeisen, D. I., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño Southern Oscillation to the stratosphere. Reviews of Geophysics, 57, 5–47.
- Duchon, C. E., 1979: Lanczos Filtering in One and Two Dimensions. Journal of applied meteorology, 18, 1016–1022.
- Ermakova, T. S., et al., 2022: Manifestations of Different El Niño Types in the Dynamics of the Extratropical Stratosphere. Atmosphere, 13 (2111).
- Ermakova, T. S., O. G. Aniskina, I. A. Statnaia, M. A. Motsakov, and A. P. Pogoreltsev, 2019: Simulation of the ENSO influence on the extra-tropical middle atmosphere. Earth Planets Space, 71 (8).
- Garfinkel, C. I., A. H. Butler, D. W. Waugh, M. M. Hurwitz, and L. M. Polvani, 2012: Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? Journal of Geophysical Research: Atmospheres, 117 (D19).
- Hegyi, B. M. and Y. Deng, 2011: A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal‐scale variability of cool‐season Arctic precipitation. Journal of Geophysical Research: Atmospheres, 116 (D20).
- Holton, J. R., 1980: The dynamics of sudden stratospheric warmings. Annual Review of Earth and Planetary Sciences, 8, 169–190.
- Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. Journal of Climate, 21 (19), 5145–5153.
- Hurwitz, M. M., I. S. Song, L. D. Oman, P. A. Newman, A. M. Molod, S. M. Frith, and J. E. Nielsen, 2011: Response of the Antarctic stratosphere to warm pool El Niño events in the GEOS CCM. Atmospheric Chemistry and Physics, 11 (18), 9659–9669.
- Hurwitz, M. M., N. Calvo, C. I. Garfinkel, A. H. Butler, S. Ineson, C. Cagnazzo, ... and C. Peña-Ortiz, 2014: Extra-tropical atmospheric response to ENSO in the CMIP5 models. Climate dynamics, 43, 3367–3376.
- Iskandar, I., D. O. Lestrai, and M. Nur, 2019: Impact of El Niño and El Niño Modoki Events on Indonesian Rainfall. Makara Journal of Science, 23 (4), 7.
- Iza, M. and N. Calvo, 2015: Role of stratospheric sudden warmings on the response to central Pacific El Niño. Geophysical Research Letters, 42 (7), 2482–2489.
- Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience, 8, 433–440.
- Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, and H. Endo et al., 2015: The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society, 93, 5–48.
- Kochetkova, O. S., V. I. Mordvinov, and M. A. Rudneva, 2014: Analysis of factors influencing the occurrence of stratospheric warming. Atmosphere and Ocean Optics, 27 (8), 719–727.
- Kruger, K., B. Naujokat, and K. Labitzke, 2005: The Unusual Midwinter Warming in the Southern Hemisphere Stratosphere 2002. Journal of the Atmospheric Sciences, 62, 603–613.
- Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: cold tongue El Niño and warm pool El Niño. Journal of climate, 22 (6), 1499–1515.
- Larkin, N. K. and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average US weather anomalies. Geophysical Research Letters, 32 (13).
- Lawrence, C., S. Eckermann, and K. Hoppel, 2009: Planetary Wave Breaking and Tropospheric Forcing as Seen in the Stratospheric Sudden Warming of 2006. Journal of the Atmospheric Sciences, 66 (2), 495–507.
- Manney, G. L., M. J. Schwartz, K. Krüger, M. L. Santee, S. Pawson, J. N. Lee, W. H. Daffer, R. A. Fuller, and N. J. Livesey, 2009: Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming, Geophysical Research Letters, 36 (L12815).
- Matsuno, T., 1971: A dynamical model of sudden stratospheric warming. Journal of the Atmospheric Sciences, 28, 871–883.
- McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings. Journal of the Meteorological Society of Japan, 60 (1), 37–64.
- Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. Journal of Atmospheric Sciences, 42 (3), 217–229.
- Pogoreltsev, A. I., E. N. Savenkova, and N. N. Pertsev, 2014: Sudden stratospheric warmings: the role of normal atmospheric modes. Geomagnetism and Aeronomy, 54 (3), 387–387.
- Rayner, N. A. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, ... and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108 (D14).
- Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20 (22), 5473–5496.
- Scherhag, R., 1952: Die explosionsartige Stratosphärenerwar-mungen des Spätwinters 1951/52. Ber. Deut. Wetterdienstes, 6 (38), 51–63.
- Schoeberl, M. R. and D. L. Hartmann, 1991: The Dynamics of the Stratospheric Polar Vortex and Its Relation to Springtime Ozone Depletions. Science, 251 (46–52).
- Schoeberl, M. R., 1978: Stratospheric warmings: Observations and theory. Reviews of Geophysics, 16 (521).
- Sobaeva, D. A., Yu. A. Zyulyaeva, and S. K. Gulev, 2024: The influence of localization of positive SST anomalies in the equatorial Pacific Ocean on troposphere-stratospheric dynamics in idealized modeling. Journal of Oceanological Research, 52 (1), 34–56.
- Sobaeva, D., Y. Zyulyaeva, and S. Gulev, 2023: ENSO and PDO Effect on Stratospheric Dynamics in Isca Numerical Experiments. Atmosphere, 14 (3), 459.
- Stan, C. and D. M. Straus, 2009: Stratospheric predictability and sudden stratospheric warming events. Journal of Geophysical Research, 114 (D12103).
- Sun, L. and W. A. Robinson, 2009: Downward influence of stratospheric final warming events in an idealized model. Geophysical Research Letters, 36 (L03819).
- Sun, L., W. A. Robinson, and G. Chen, 2011: The predictability of stratospheric warming events: more from the troposphere or the stratosphere? Journal of the Atmospheric Sciences, 69.
- Thomson, S. I. and G. K. Vallis, 2018: Atmospheric response to SST anomalies. Part I: Background-state dependence, teleconnections, and local effects in winter. Journal of the Atmospheric Sciences, 75 (12), 4107–4124.
- Vallis, G. K., G. Colyer, R. Geen, E. Gerber, M. Jucker, P. Maher, ... and S. I. Thomson, 2018: Isca, v1. 0: A framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geoscientific Model Development, 11 (3), 843–859.
- Van Loon, H., R. L. Jenne, and K. Labitzke, 1973: Zonal harmonic standing waves. Journal of Geophysical Research, 78, 4463–4471.
- Vyatkin, A. N., O. S. Zorkaltseva, and V. I. Mordvinov, 2024: Influence of El Niño on parameters of the middle and upper atmosphere over Eastern Siberia according to reanalysis and model data in winter. Solnechno-zemnaya fizika, 10 (1), 44–52.
- Weinberger, I., C. I. Garfinkel, I. P. White, and L. D. Oman, 2019: The salience of nonlinearities in the boreal winter response to ENSO: Arctic stratosphere and Europe. Climate dynamics, 53, 4591–4610.
- Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate dynamics, 29 (2–3), 113–129.
- Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dynamics, 32 (5), 663–674.
- White, I., C. I. Garfinkel, E. P. Gerber, M. Jucker, V. Aquila, and L. D. Oman, 2019: The downward influence of sudden stratospheric warmings: Association with tropospheric precursors. Journal of Climate, 32 (1), 85–108.
- Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chemistry and Physics, 12 (11), 5259–5273.
- Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461 (7263), 511–514.
- Zorkal’tseva, O. S., O. Yu. Antokhina, and P. N. Antokhin, 2023: Long-term variability of parameters of sudden stratospheric warmings according to ERA5 reanalysis data. Optika Atmosfery i Okeana, 36 (3), 200–208.
- Zyulyaeva, Y., D. Sobaeva, and S. Gulev, 2023: The response of the Tropospheric Dynamics to Extreme States of the Stratospheric Polar Vortex during ENSO Phases in Idealized Modeling. Izvestiya Atmospheric and Oceanic Physics, 59 (6), 707–719.
Transfer of copyrights occurs on the basis of a license agreement between the Author and Shirshov Institute of Oceanology, RAS