ОЦЕНКА АДЕКВАТНОСТИ ВОСПРОИЗВЕДЕНИЯ ПРОЦЕССОВ ТРАНСФОРМАЦИИ ПОВЕРХНОСТНЫХ ВОД РАЗЛИЧНЫМИ МОДЕЛЯМИ CMIP6 В СЕВЕРНОЙ АТЛАНТИКЕ

  • В. М. Кукушкин Институт океанологии им. П.П. Ширшова РАН
  • С. К. Гулев Институт океанологии им. П.П. Ширшова РАН
DOI: 10.29006/1564-2291.JOR-2024.52(4).7
Ключевые слова: Северная Атлантика, водные массы, потоки плотности, трансформация, конвекция, модальные воды

Аннотация

В настоящей статье обсуждается корректность воспроизведения потоков плотности и трансформации поверхностных вод в Северной Атлантике моделями из проекта CMIP6. Трансформация поверхностных вод в Северной Атлантике тесно связана с конвективными процессами и образованием модальных вод. Эти процессы являются частью Атлантической меридиональной ячейки циркуляции и глобального конвейера в целом. В настоящем исследовании использованы данные реанализа NCEP CFSR/CFSv2, как наиболее достоверно воспроизводящие взаимодействие океана и атмосферы. Для сравнения были взяты данные исторического эксперимента моделей INM-CM-5.0, MPI-ESM1.2 и MIROC6 c 1979 по 2014 гг. Все модели в общем виде воспроизводят сезонную динамику потоков плотности и трансформации, которая зависит преимущественно от потоков тепла. В моделях воспроизводится положительный поток плотности в зимнее время в Северной Атлантике с максимумом у течения Гольфстрим. Далее на основе TS-анализа были выделены отдельные поверхностные водные массы, у которых анализировалась климатическая динамика величины трансформации. Величину трансформации отдельных водных масс наиболее приближенно к значениям CFSR воспроизводит модель MPI, менее близко MIROC6, наибольшие различия с реанализом CFSR у модели INM.

Литература


  1. Добровольский А. Д. Об определении водных масс // Океанология. 1961. Т. 1. Вып. 1.

  2. Монин А. С., Обухов. А. М. Безразмерные характеристики в приземном слое атмосферы // Доклады АН СССР. 1953. Т. 93. № 2. С. 223–226.

  3. Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) //SEANOE. 2000.

  4. Bourlès B. et al. The PIRATA program: History, accomplishments and future directions // Bulletin of the American Meteorological Society. 2008. Vol. 89. No. 8. P. 1111–1126.

  5. Buckley M. et al. Buoyancy forcing and the subpolar Atlantic meridional overturning circulation // Philosophical Transactions of the Royal Society A. 2023. Vol. 381. No. 2262. P. 20220181.

  6. Bunker A. F. Computations of surface energy flux and annual air–sea interaction cycles of the North Atlantic Ocean // Monthly Weather Review. 1976. Vol. 104. No. 9. P. 1122–1140.

  7. Conkright M. E. World Ocean Database. 2001. Vol. 1. Introduction. 2002.

  8. Derber J., Rosati A. A global oceanic data assimilation system // Journal of Physical Oceanography. 1989. Vol. 19. No. 9. P. 1333–1347.

  9. Ek M. B. et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model // Journal of Geophysical Research: Atmospheres. 2003. Vol. 108. No. D22.

  10. Eyring V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization // Geoscientific Model Development. 2016. Vol. 9. No. 5. P. 1937–1958.

  11. Gent P. R. et al. Parameterizing eddy-induced tracer transports in ocean circulation models // Journal of physical oceanography. 1995. Vol. 25. No. 4. P. 463–474.

  12. Giorgetta M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 // Journal of Advances in Modeling Earth Systems. 2013. Vol. 5. No. 3. P. 572–597.

  13. Goswami T. et al. Assessment of simulation of radiation in NCEP Climate Forecasting System (CFS V2) // Atmospheric Research. 2017. Vol. 193. P. 94–106.

  14. Griffies S. M. et al. A technical guide to MOM4 // GFDL Ocean Group Tech. Rep. 2004. Vol. 5. P. 342.

  15. Grist J. P., Marsh R., Josey S. A. On the relationship between the North Atlantic meridional overturning circulation and the surface-forced overturning streamfunction // Journal of Climate. 2009. Vol. 22. No. 19. P. 4989–5002.

  16. Grist J. P., Josey S. A., Marsh R. Surface estimates of the Atlantic overturning in density space in an eddy‐permitting ocean model // Journal of Geophysical Research: Oceans. 2012. Vol. 117. No. C6.

  17. Gulev S. K. et al. Water mass transformation in the North Atlantic and its impact on the meridional circulation: Insights from an ocean model forced by NCEP–NCAR reanalysis surface fluxes // Journal of climate. 2003. Vol. 16. No. 19. P. 3085–3110.

  18. Gulev S. K., Barnier B., Molines J.-M., Penduff T. Impact of spatial resolution of simulated surface water mass transformation in the Atlantic // Ocean Modelling. 2007. Vol. 19. P. 138–160.

  19. Haines K., Old C. Diagnosing natural variability of North Atlantic water masses in HadCM3 // Journal of climate. 2005. Vol. 18. No. 12. P. 1925–1941.

  20. Hajjar K., Salzmann M. Relative contributions of local heat storage and ocean heat transport to cold‐season Arctic Ocean surface energy fluxes in CMIP6 models // Quarterly Journal of the Royal Meteorological Society. 2023. Vol. 149. No. 755. P. 2091–2106.

  21. Häkkinen S. Variability of the simulated meridional heat transport in the North Atlantic for the period 1951–1993 // Journal of Geophysical Research: Oceans. 1999. Vol. 104. No. C5. P. 10991–11007.

  22. Han J., Pan H. L. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System // Weather and Forecasting. 2011. Vol. 26. No. 4. P. 520–533.

  23. Howe N., Czaja A. A new climatology of air–sea density fluxes and surface water mass transformation rates constrained by WOCE // Journal of physical oceanography. 2009. Vol. 39. No. 6. P. 1432–1447.

  24. Heil P., Allison I., Lytle V. I. Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover // Journal of Geophysical Research: Oceans. 1996. Vol. 101. No. C11. P. 25741–25752.

  25. Jackson L. C., Petit T. North Atlantic overturning and water mass transformation in CMIP6 models // Climate Dynamics. 2023. Vol. 60. No. 9. P. 2871–2891.

  26. Josey S. A., Grist J. P., Marsh R. Estimates of meridional overturning circulation variability in the North Atlantic from surface density flux fields // Journal of Geophysical Research: Oceans. 2009. Vol. 114. P. 9.

  27. Koenigk T. et al. Deep mixed ocean volume in the Labrador Sea in HighResMIP models // Climate Dynamics. 2021. Vol. 57. No. 7. P. 1895–1918.

  28. Lange S. ISIMIP3b bias adjustment fact sheet // Potsdam: Inter-Sectoral Impact Model Intercomparison Project. 2021.

  29. Langehaug H. R. et al. Water mass transformation and the North Atlantic Current in three multicentury climate model simulations // Journal of Geophysical Research: Oceans. 2012. Vol. 117. P. 11.

  30. Large W. G., Nurser A. J. G. Ocean surface water mass transformation // International Geophysics. Academic Press, 2001. Vol. 77. P. 317–336.

  31. Lazier J. et al. Convection and restratification in the Labrador Sea, 1990–2000 // Deep Sea Research. Part I: Oceanographic Research Papers. 2002. Vol. 49. No. 10. P. 1819–1835.

  32. Li J. et al. Evaluation of CMIP6 global climate models for simulating land surface energy and water fluxes during 1979–2014 // Journal of Advances in Modeling Earth Systems. 2021. Vol. 13. No. 6.

  33. Marsh R. et al. Water mass transformation in the North Atlantic over 1985–2002 simulated in an eddy-permitting model // Ocean Science. 2005. Vol. 1. No. 2. P. 127–144.

  34. Marsh R. Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes // Journal of climate. 2000. Vol. 13. No. 18. P. 3239–3260.

  35. Marsland S. J. et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates // Ocean modelling. 2003. Vol. 5. No. 2. P. 91–127.

  36. Marshall J., Jamous D., Nilsson J. Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates // Deep Sea Research. Part I: Oceanographic Research Papers. 1999. Vol. 46. No. 4. P. 545–572.

  37. McDougall T. J. Neutral surfaces // Journal of Physical Oceanography. 1987. Vol. 17. No. 11. P. 1950–1964.

  38. McDougall T. J., Greatbatch R. J., Lu Y. On conservation equations in oceanography: How accurate are Boussinesq ocean models? // Journal of Physical Oceanography. 2002. Vol. 32. № 5. P. 1574–1584.

  39. McPhaden M. J. The tropical atmosphere ocean array is completed // Bulletin of the American Meteorological Society. 1995. Vol. 76. No. 5. P. 739–744.

  40. Noh Y., Kim Jin H. Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near‐surface process // Journal of Geophysical Research: Oceans. 1999. Vol. 104. No. C7. P. 15621–15634.

  41. Pacanowski R. C., Philander S. G. H. Parameterization of vertical mixing in numerical models of tropical oceans // Journal of Physical Oceanography. 1981. Vol. 11. No. 11. P. 1443–1451.

  42. Pickart R. S., Spall M. A. Deep Convection east of Greenland: atmospheric forcing and oceanic response // EGS-AGU-EUG Joint Assembly. 2003. P. 4377.

  43. Reintges A. et al. Subpolar North Atlantic mean state affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models // Journal of Climate. 2024. Vol. 37. No. 21. P. 5543–5559.

  44. Saha S. et al. The NCEP climate forecast system // Journal of Climate. 2006. Vol. 19. No. 15. P. 3483–3517.

  45. Saha S. et al. The NCEP climate forecast system version 2 // Journal of Climate. 2014. Vol. 27. No. 6. P. 2185–2208.

  46. Sarafanov A. et al. Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid‐2000s // Journal of Geophysical Research: Oceans. 2008. Vol. 113. No. C12.

  47. Sarafanov A. et al. Warming and salinification of intermediate and deep waters in the Irminger Sea and Iceland Basin in 1997–2006 // Geophysical Research Letters. 2007. Vol. 34. No. 23.

  48. Speer K., Tziperman E. Rates of water mass formation in the North Atlantic Ocean // Journal of Physical Oceanography. 1992. Vol. 22. No. 1. P. 93–104.

  49. Tatebe H. et al. Description and basic evaluation of simulated mean state, internal variability and climate sensitivity in MIROC6 // Geoscientific Model Development. 2019. Vol. 12. No. 7. P. 2727–2765.

  50. Tooth O. J. et al. Seasonal overturning variability in the eastern North Atlantic subpolar gyre: a Lagrangian perspective // Ocean Science. 2023. Vol. 19. No. 3. P. 769–791.

  51. Tsujino H., Hasumi H., Suginohara N. Deep Pacific circulation controlled by vertical diffusivity at the lower thermocline depths // Journal of Physical Oceanography. 2000. Vol. 30. No. 11. P. 2853–2865.

  52. Tziperman E. On the role of interior mixing and air-sea fluxes in determining the stratification and circulation of the oceans // Journal of Physical Oceanography. 1986. Vol. 16. No. 4. P. 680–693.

  53. Våge K. et al. The Irminger Gyre: Circulation, convection and interannual variability // Deep Sea Research Part I: Oceanographic Research Papers. 2011. Vol. 58. No. 5. P. 590–614.

  54. Volodin E. M. et al. Simulation of the present-day climate with the climate model INMCM5 // Climate dynamics. 2017. Vol. 49. No. 11. P. 3715–3734.

  55. Walin G. On the relation between sea‐surface heat flow and thermal circulation in the ocean // Tellus. 1982. Vol. 34. No. 2. P. 187–195.

  56. Zalesny V. B., Gusev A. V. Mathematical model of the World Ocean dynamics with algorithms of variational assimilation of temperature and salinity fields // Russ. J. Numer. Anal. Math. Modelling, 2009. Vol. 24. No. 2. P. 171–191.

Опубликован
2024-12-29
Раздел
Физика океана и климат