ОЦЕНКА АДЕКВАТНОСТИ ВОСПРОИЗВЕДЕНИЯ ПРОЦЕССОВ ТРАНСФОРМАЦИИ ПОВЕРХНОСТНЫХ ВОД РАЗЛИЧНЫМИ МОДЕЛЯМИ CMIP6 В СЕВЕРНОЙ АТЛАНТИКЕ
Аннотация
В настоящей статье обсуждается корректность воспроизведения потоков плотности и трансформации поверхностных вод в Северной Атлантике моделями из проекта CMIP6. Трансформация поверхностных вод в Северной Атлантике тесно связана с конвективными процессами и образованием модальных вод. Эти процессы являются частью Атлантической меридиональной ячейки циркуляции и глобального конвейера в целом. В настоящем исследовании использованы данные реанализа NCEP CFSR/CFSv2, как наиболее достоверно воспроизводящие взаимодействие океана и атмосферы. Для сравнения были взяты данные исторического эксперимента моделей INM-CM-5.0, MPI-ESM1.2 и MIROC6 c 1979 по 2014 гг. Все модели в общем виде воспроизводят сезонную динамику потоков плотности и трансформации, которая зависит преимущественно от потоков тепла. В моделях воспроизводится положительный поток плотности в зимнее время в Северной Атлантике с максимумом у течения Гольфстрим. Далее на основе TS-анализа были выделены отдельные поверхностные водные массы, у которых анализировалась климатическая динамика величины трансформации. Величину трансформации отдельных водных масс наиболее приближенно к значениям CFSR воспроизводит модель MPI, менее близко MIROC6, наибольшие различия с реанализом CFSR у модели INM.
Литература
- Добровольский А. Д. Об определении водных масс // Океанология. 1961. Т. 1. Вып. 1.
- Монин А. С., Обухов. А. М. Безразмерные характеристики в приземном слое атмосферы // Доклады АН СССР. 1953. Т. 93. № 2. С. 223–226.
- Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) //SEANOE. 2000.
- Bourlès B. et al. The PIRATA program: History, accomplishments and future directions // Bulletin of the American Meteorological Society. 2008. Vol. 89. No. 8. P. 1111–1126.
- Buckley M. et al. Buoyancy forcing and the subpolar Atlantic meridional overturning circulation // Philosophical Transactions of the Royal Society A. 2023. Vol. 381. No. 2262. P. 20220181.
- Bunker A. F. Computations of surface energy flux and annual air–sea interaction cycles of the North Atlantic Ocean // Monthly Weather Review. 1976. Vol. 104. No. 9. P. 1122–1140.
- Conkright M. E. World Ocean Database. 2001. Vol. 1. Introduction. 2002.
- Derber J., Rosati A. A global oceanic data assimilation system // Journal of Physical Oceanography. 1989. Vol. 19. No. 9. P. 1333–1347.
- Ek M. B. et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model // Journal of Geophysical Research: Atmospheres. 2003. Vol. 108. No. D22.
- Eyring V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization // Geoscientific Model Development. 2016. Vol. 9. No. 5. P. 1937–1958.
- Gent P. R. et al. Parameterizing eddy-induced tracer transports in ocean circulation models // Journal of physical oceanography. 1995. Vol. 25. No. 4. P. 463–474.
- Giorgetta M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 // Journal of Advances in Modeling Earth Systems. 2013. Vol. 5. No. 3. P. 572–597.
- Goswami T. et al. Assessment of simulation of radiation in NCEP Climate Forecasting System (CFS V2) // Atmospheric Research. 2017. Vol. 193. P. 94–106.
- Griffies S. M. et al. A technical guide to MOM4 // GFDL Ocean Group Tech. Rep. 2004. Vol. 5. P. 342.
- Grist J. P., Marsh R., Josey S. A. On the relationship between the North Atlantic meridional overturning circulation and the surface-forced overturning streamfunction // Journal of Climate. 2009. Vol. 22. No. 19. P. 4989–5002.
- Grist J. P., Josey S. A., Marsh R. Surface estimates of the Atlantic overturning in density space in an eddy‐permitting ocean model // Journal of Geophysical Research: Oceans. 2012. Vol. 117. No. C6.
- Gulev S. K. et al. Water mass transformation in the North Atlantic and its impact on the meridional circulation: Insights from an ocean model forced by NCEP–NCAR reanalysis surface fluxes // Journal of climate. 2003. Vol. 16. No. 19. P. 3085–3110.
- Gulev S. K., Barnier B., Molines J.-M., Penduff T. Impact of spatial resolution of simulated surface water mass transformation in the Atlantic // Ocean Modelling. 2007. Vol. 19. P. 138–160.
- Haines K., Old C. Diagnosing natural variability of North Atlantic water masses in HadCM3 // Journal of climate. 2005. Vol. 18. No. 12. P. 1925–1941.
- Hajjar K., Salzmann M. Relative contributions of local heat storage and ocean heat transport to cold‐season Arctic Ocean surface energy fluxes in CMIP6 models // Quarterly Journal of the Royal Meteorological Society. 2023. Vol. 149. No. 755. P. 2091–2106.
- Häkkinen S. Variability of the simulated meridional heat transport in the North Atlantic for the period 1951–1993 // Journal of Geophysical Research: Oceans. 1999. Vol. 104. No. C5. P. 10991–11007.
- Han J., Pan H. L. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System // Weather and Forecasting. 2011. Vol. 26. No. 4. P. 520–533.
- Howe N., Czaja A. A new climatology of air–sea density fluxes and surface water mass transformation rates constrained by WOCE // Journal of physical oceanography. 2009. Vol. 39. No. 6. P. 1432–1447.
- Heil P., Allison I., Lytle V. I. Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover // Journal of Geophysical Research: Oceans. 1996. Vol. 101. No. C11. P. 25741–25752.
- Jackson L. C., Petit T. North Atlantic overturning and water mass transformation in CMIP6 models // Climate Dynamics. 2023. Vol. 60. No. 9. P. 2871–2891.
- Josey S. A., Grist J. P., Marsh R. Estimates of meridional overturning circulation variability in the North Atlantic from surface density flux fields // Journal of Geophysical Research: Oceans. 2009. Vol. 114. P. 9.
- Koenigk T. et al. Deep mixed ocean volume in the Labrador Sea in HighResMIP models // Climate Dynamics. 2021. Vol. 57. No. 7. P. 1895–1918.
- Lange S. ISIMIP3b bias adjustment fact sheet // Potsdam: Inter-Sectoral Impact Model Intercomparison Project. 2021.
- Langehaug H. R. et al. Water mass transformation and the North Atlantic Current in three multicentury climate model simulations // Journal of Geophysical Research: Oceans. 2012. Vol. 117. P. 11.
- Large W. G., Nurser A. J. G. Ocean surface water mass transformation // International Geophysics. Academic Press, 2001. Vol. 77. P. 317–336.
- Lazier J. et al. Convection and restratification in the Labrador Sea, 1990–2000 // Deep Sea Research. Part I: Oceanographic Research Papers. 2002. Vol. 49. No. 10. P. 1819–1835.
- Li J. et al. Evaluation of CMIP6 global climate models for simulating land surface energy and water fluxes during 1979–2014 // Journal of Advances in Modeling Earth Systems. 2021. Vol. 13. No. 6.
- Marsh R. et al. Water mass transformation in the North Atlantic over 1985–2002 simulated in an eddy-permitting model // Ocean Science. 2005. Vol. 1. No. 2. P. 127–144.
- Marsh R. Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes // Journal of climate. 2000. Vol. 13. No. 18. P. 3239–3260.
- Marsland S. J. et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates // Ocean modelling. 2003. Vol. 5. No. 2. P. 91–127.
- Marshall J., Jamous D., Nilsson J. Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates // Deep Sea Research. Part I: Oceanographic Research Papers. 1999. Vol. 46. No. 4. P. 545–572.
- McDougall T. J. Neutral surfaces // Journal of Physical Oceanography. 1987. Vol. 17. No. 11. P. 1950–1964.
- McDougall T. J., Greatbatch R. J., Lu Y. On conservation equations in oceanography: How accurate are Boussinesq ocean models? // Journal of Physical Oceanography. 2002. Vol. 32. № 5. P. 1574–1584.
- McPhaden M. J. The tropical atmosphere ocean array is completed // Bulletin of the American Meteorological Society. 1995. Vol. 76. No. 5. P. 739–744.
- Noh Y., Kim Jin H. Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near‐surface process // Journal of Geophysical Research: Oceans. 1999. Vol. 104. No. C7. P. 15621–15634.
- Pacanowski R. C., Philander S. G. H. Parameterization of vertical mixing in numerical models of tropical oceans // Journal of Physical Oceanography. 1981. Vol. 11. No. 11. P. 1443–1451.
- Pickart R. S., Spall M. A. Deep Convection east of Greenland: atmospheric forcing and oceanic response // EGS-AGU-EUG Joint Assembly. 2003. P. 4377.
- Reintges A. et al. Subpolar North Atlantic mean state affects the response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 models // Journal of Climate. 2024. Vol. 37. No. 21. P. 5543–5559.
- Saha S. et al. The NCEP climate forecast system // Journal of Climate. 2006. Vol. 19. No. 15. P. 3483–3517.
- Saha S. et al. The NCEP climate forecast system version 2 // Journal of Climate. 2014. Vol. 27. No. 6. P. 2185–2208.
- Sarafanov A. et al. Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid‐2000s // Journal of Geophysical Research: Oceans. 2008. Vol. 113. No. C12.
- Sarafanov A. et al. Warming and salinification of intermediate and deep waters in the Irminger Sea and Iceland Basin in 1997–2006 // Geophysical Research Letters. 2007. Vol. 34. No. 23.
- Speer K., Tziperman E. Rates of water mass formation in the North Atlantic Ocean // Journal of Physical Oceanography. 1992. Vol. 22. No. 1. P. 93–104.
- Tatebe H. et al. Description and basic evaluation of simulated mean state, internal variability and climate sensitivity in MIROC6 // Geoscientific Model Development. 2019. Vol. 12. No. 7. P. 2727–2765.
- Tooth O. J. et al. Seasonal overturning variability in the eastern North Atlantic subpolar gyre: a Lagrangian perspective // Ocean Science. 2023. Vol. 19. No. 3. P. 769–791.
- Tsujino H., Hasumi H., Suginohara N. Deep Pacific circulation controlled by vertical diffusivity at the lower thermocline depths // Journal of Physical Oceanography. 2000. Vol. 30. No. 11. P. 2853–2865.
- Tziperman E. On the role of interior mixing and air-sea fluxes in determining the stratification and circulation of the oceans // Journal of Physical Oceanography. 1986. Vol. 16. No. 4. P. 680–693.
- Våge K. et al. The Irminger Gyre: Circulation, convection and interannual variability // Deep Sea Research Part I: Oceanographic Research Papers. 2011. Vol. 58. No. 5. P. 590–614.
- Volodin E. M. et al. Simulation of the present-day climate with the climate model INMCM5 // Climate dynamics. 2017. Vol. 49. No. 11. P. 3715–3734.
- Walin G. On the relation between sea‐surface heat flow and thermal circulation in the ocean // Tellus. 1982. Vol. 34. No. 2. P. 187–195.
- Zalesny V. B., Gusev A. V. Mathematical model of the World Ocean dynamics with algorithms of variational assimilation of temperature and salinity fields // Russ. J. Numer. Anal. Math. Modelling, 2009. Vol. 24. No. 2. P. 171–191.
Передача авторских прав происходит на основании лицензионного договора между Автором и Федеральным государственным бюджетным учреждением науки Институт океанологии им. П.П. Ширшова Российской академии наук (ИО РАН)