УДК 553

DOI: 10.29006/1564-2291.JOR-2023.51(4).4

МИНЕРАЛЬНО-СЫРЬЕВЫЕ РЕСУРСЫ ТВЕРДЫХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ МИРОВОГО ОКЕАНА: СОВРЕМЕННЫЕ РЕАЛИИ И ПОТЕНЦИАЛ РУДОНОСНОСТИ

Л. В. Оганесян¹, Е. Г. Мирлин²

¹Всероссийское геологическое общество, Россия, 115191, Москва, ул. 2-я Рощинская, д. 10, e-mail: oganesian@alliance-gr.com; ²Государственный геологический музей им. В. И. Вернадского РАН, Россия, 125009, Москва, ул. Моховая, д. 11, стр. 11, e-mail: egmmir@gmail.com

На основе количественных показателей скоплений основных типов твердых полезных ископаемых Мирового океана: железо-марганцевых конкреций, кобальтоносных марганцевых корок и глубоководных полиметаллических сульфидов проведена оценка рудного потенциала как в масштабе всего океана, так и в пределах заявочных районов Российской Федерации. Осуществлена оценка всех типов океанских руд, при этом показано, что она является лишь ранговым ориентиром, указывающим на их исключительную важность для глобальной минерально-сырьевой обеспеченности.

Ключевые слова: железо-марганцевые конкреции, кобальтоносные марганцевые корки, глубоководные полиметаллические сульфиды, рудный потенциал

Введение

Геологам хорошо известно, что запасы месторождений полезных ископаемых на континентах, выходящих на земную поверхность, в современную эпоху близятся к истощению. По этой причине исключительно актуальной становится проблема поиска месторождений, тяготеющих к глубинным горизонтам земной коры. Решение ее — серьезный вызов для геологической науки, поскольку необходимо разработать критерии прогноза и поиска различных видов минерального сырья, залегающего на значительных глубинах. Это можно осуществить лишь объединенными усилиями не только геологов разных направлений (рудников, тектонистов, геохимиков, геофизиков и др.), но и специалистов в области физики различных природных сред (Мирлин, Оганесян, 2019). Решение данной проблемы — дело достаточно отдаленного будущего. Это одна из причин, по которой взоры человечества, остро нуждающегося в минеральном сырье, все чаще обращаются к Мировому океану, где были открыты масштабные скопления металлических полезных ископаемых. Они представлены железомарганцевыми конкрециями (ЖМК), кобальто-марганцевыми корками (КМК) и

глубоководными полиметаллическими сульфидами (ГПС) (Андреев, 2020). Большинство скоплений океанских руд располагаются в пределах международных вод Мирового океана, и они объявлены общечеловеческим достоянием. Россия является одной из тех стран, которые положили начало целенаправленному системному изучению геологического строения дна Мирового океана и его рудоносности. Наша страна, опередив другие страны, уже в 2001 г. оформила контракт с Международным органом по морскому дну Организации Объединенных Наций (МОМД ООН) на поиски и разведку железомарганцевых конкреций. В настоящее время аналогичные заявки поданы нашей страной на геологоразведочные работы на КМК и ГПС. Другие страны также развернули активную деятельность в Мировом океане, направленную на изучение, а в перспективе и на освоение указанных типов ТПИ.

Проблема изучения и освоения минеральных ресурсов Мирового океана, закрепление за определенными странами права на них имеет не только экономический, но и важный геополитический смысл. Совершенно очевидно, что со временем геополитическая составляющая владения ресурсами будет усилена, поскольку возрастание конкуренции в сфере минерально-сырьевых запасов неизбежно. Экономика и политика в современном мире образуют единый вектор и такими останутся в будущем. Фактически речь идет о крупной международной проблеме, где тесно соприкасаются и пересекаются интересы разных стран: экономические, политические, экологические, международно-правовые. Исходя из складывающейся ситуации, в настоящей работе были поставлены следующие задачи:

- оценка современного состояния действующих контрактов различных стран на геологоразведочные работы в Мировом океане;
- оценка продуктивности скоплений твердых полезных ископаемых с учетом условий их локализации;
- характеристика рудного потенциала разведочных районов Российской Федерации в Мировом океане.

Анализ потенциала рудоносности выполнен на основе материалов экспедиционных исследований и обобщений данных по изучению океанских ТПИ, любезно предоставленных ВНИИОкеангеологией им. И. С. Гранберга (Андреев, 2020).

Ретроспектива и современные тенденции

Эра океанологических исследований началась около 150 лет тому назад и была связана с первыми экспедициями в Мировой океан. До этого времени о глубинах океана было известно очень мало из-за недостаточной длины тросов, с помощью которых производились определения глубин дна. В последующем эта трудность постепенно преодолевалась — длина измерительных тросов увеличивалась, а еще позднее интерес к рельефу океанского дна получил дополнительный импульс, он был связан с чисто прикладными задачами, прежде всего — с прокладкой трансатлантических телеграфных и телефонных кабелей. К концу XIX века был сформулирован целый ряд

проблем, касающихся природы океана, в том числе океанских глубин, разрешить их была призвана экспедиция на судне «Челленджер». В течение 4–х лет (1872–1876 гг.) экспедиция прошла 68 900 морских миль и сделала около 500 глубоководных промеров с помощью лота, снабженного стальным тросом. Глубина 8100 м, измеренная экспедицией в Марианском желобе, была максимальной для того времени. Этой экспедицией со дна океана были подняты конкреции железо-марганцевого состава, а также фосфоритов, однако в то время эти находки не получили заслуженной оценки.

Экспедиция на «Челленджере» была важной вехой в изучении Мирового океана, но проблемы геологии и минеральных ресурсов Мирового океана в ее программе исследований не находились на первом плане. Это было естественно по ряду объективных причин. Во-первых, научные представления о строении, составе, геодинамике и геохронологии земной коры в тот исторический период еще не давали повода для принципиальных заключений и выводов. Так, долгое время доминировало представление о том, что ложе океанов, т. е. 72 % земной поверхности, представляет собой погруженные участки континентальной земной коры. Во-вторых, относительно небольшие объемы и ограниченная номенклатура используемых минеральных ресурсов, добываемых из месторождений, выведенных на эрозионную поверхность суши, не создавали для человечества проблему — беспокойства по этому поводу не возникало.

Прогрессивный рост научного интереса к Мировому океану, включая строение и состав его земной коры, произошел во второй половине XX века. Он ознаменовался началом масштабного разворота работ по изучению дна Мирового океана и глубинного строения его коры. Многовековой период великих географических открытий сменился периодом великих геологических открытий в Мировом океане. При этом география, геология, морские химия, физика и биология, их цели, задачи синтезировались в рамках общего объекта изучения и освоения. Получение принципиально новых данных о геологии океана стало возможным благодаря разработкам и использованию в практике океанологии ранее не известных методов изучения океанского ложа и океанской коры. К ним, в первую очередь, относятся эхолоты: широколучевые, узколучевые и многолучевые, сонары бокового обзора, морские магнитометры, сейсмические и спутниковые комплексы, глубоководные буксируемые аппараты и пробоотборники, оборудование глубоководного бурения и другие технические средства. Именно благодаря широкому использованию новых технологий, за последние 50 лет получена та информация о геологическом строении океанов, которая послужила основой для революции в геологии.

Этот информационный взрыв явился ответом на естественную любознательность научного сообщества к системе мироздания, к осознанию единства и взаимодействия всех геосфер Земли. Настал период пересмотра господствующих общегеологических планетарных моделей и геотектонических гипотез. Стала совершенно очевидной невозможность создания целостной модели формирования земной коры, ее ретроспективной и современной геодинамики без изучения помимо суши еще двух третей земной коры, скрытых под водами Мирового океана. Осознание этой

неоспоримой парадигмы стало отправной точкой для разворота работ по геологическому изучению дна океана. В результате уже в начале 60-х годов XX столетия была обоснована новая геодинамическая модель, получившая название «тектоника плит» или «новая глобальная тектоника». Новая модель дала ответы на многие феномены геологии, в том числе раскрыла механизм и хронологическую последовательность формирования океанов, срединно-океанских хребтов (СОХ), активных и пассивных континентальных окраин и других морфоструктур огромного масштаба. Фактографическая и теоретическая база глобальной тектоники продолжает пополняться новыми данными о свойствах той природной среды, которую изучают геологи и геофизики — геосреды.

Помимо научных интересов, перед человечеством возникла некоторая проблема. Лавинообразный рост масштабов и номенклатуры используемых полезных ископаемых заставил задуматься о текущей, ближайшей и перспективной обеспеченности человечества минеральными ресурсами. Уже в конце 50-х и начале 60-х годов XX века стало очевидно, что фонд месторождений твердых полезных ископаемых, имеющих выходы на дневную поверхность суши, близок к исчерпанию. В контексте исчерпания фонда легко открываемых ресурсов и неизбежности перехода к поискам так называемых «слепых» месторождений возникла необходимость изучения и выявления скоплений руд на дне Мирового океана (Оганесян и др., 2018; Мирлин, Оганесян, 2019). Это послужило мощным стимулом к тому, чтобы различные государства обратились к океанским рудам. Организационной формой этого экономического и геополитического интереса стали контракты с Международным органом по морскому дну ООН (МОМД). В контексте этой проблемы ниже рассматриваются имеющиеся контракты разных стран.

Действующие контракты на твердые полезные ископаемые Мирового океана

В настоящее время 16-ю странами заключены контракты с МОМД ООН на право проведения геологоразведочных работ в пределах разведочных районов (таблица 1). Помимо этих стран действует контракт международной организации «Интерокеанметалл», созданной соглашением от 27 апреля 1987 г. между Болгарией, Вьетнамом, Германской Демократической Республикой, Кубой, Польшей, СССР и Чехословакией. В настоящее время в эту группу стран входят Болгария, Куба, Польша, Россия, Словакия и Чехия.

Подавляющее большинство контрактов относятся к сфере изучения скоплений железо-марганцевых конкреций (ЖМК), ставших предметом первоочередного интереса. Уже в 2001 г. на ЖМК были заключены 6 контрактов (Россия, Южная Корея, Япония, Франция, Китай, СО «Интерокеанметалл»). Через год к этой группе присоединилась Индия. Затем наступила пауза на 4 года (Германия, 2006 г.) и потом еще сроком на 5 лет, по истечению которого к группе примкнули островные государства Науру (2011 г.) и Королевство Тонго (2012 г.). Лишь в 2013 г. заключили соглашения

Великобритания и Бельгия, далее последовали Сингапур, Республика Кирабети (2015 г.), Острова Кука, Великобритания со вторым контрактом на ЖМК (2016 г.) и Польша с контрактом на ГПС (2017 г.).

Контракты по ЖМК с 2011 г. дополнились контрактами по глубоководным полиметаллическим сульфидам (2011–2016 гг.) и кобальтоносно-марганцевым коркам (2014–2015 гг.).

Табл. 1 – Контракты с Международным органом по морскому дну по скоплениям твердых полезных ископаемых

№	Страны	Типы сы и год заклы	коплений Т очения кон			
п/п	Страны	ЖМК	КМК	ГПС		
1	Россия	2001	2015	2012		
2	«Интерокеанметалл»	2001	_	_		
3	Ю. Корея	2001	_	2014		
4	Китай	2001	2014	2011		
5	Япония	2001	2014	_		
6	Франция	2001	_	2014		
7	Индия	2002	_	2016		
8	Германия	2006	_	2015		
9	Великобритания	2013, 2016	_	-		
10	Бразилия	_	2015	-		
11	Бельгия	2013	_	-		
12	Сингапур	2015	_	-		
13	Острова Кука	2016	_	-		
14	Науру	2011	_	-		
15	Королевство Тонго	2012	_	_		
16	Республика Кирибати	2015		_		
17	Польша			2017		
	Итого контрактов по типам руд	16	5	7		
	Всего контрактов	28				

Последовательность и количество заключенных контрактов косвенно отражают хронологию выявления рудоносных объектов по мере разворота региональных геологических исследований в Мировом океане. Можно не сомневаться в том, что в результате продолжения и детализации геологических исследований количество выявленных рудоносных объектов возрастет и, возможно, изменятся численные соотношения между объектами, представленными ЖМК, КМК и ГПС.

Геологические условия локализации скоплений твердых полезных ископаемых в Мировом океане и оценка их продуктивности

В настоящее время выявлены четко выраженные геологические и геотектонические условия локализации ЖМК, КМК и ГПС (Андреев, 2020). Скопления глубоководных сульфидов во всех океанах сопряжены с процессом гидротермальной циркуляции в зонах аккреции океанской литосферы и, соответственно, тяготеют к океанским рифтовым зонам на гребнях СОХ, и в зонах спрединга в задуговых бассейнах. В то же время необходимо сделать оговорку: в последние годы благодаря детальному изучению внутриплитных областей Тихого океана в пределах Российского разведочного района на ЖМК, установлены отчетливые признаки внутриплитной гидротермальной циркуляции. Нет сомнений в том, что она сопровождается выносом эндогенного и рудного вещества. Остается неясным, может ли этот процесс приводить к формированию значительных по масштабу его скоплений. Скопления ЖМК и КМК локализованы исключительно во внутриплитной геотектонической обстановке: первые – в абиссальных котловинах, вторые – на вершинах подводных гор вулканического происхождения. При всем различии в геотектоническом положении все три типа руд объединяет принципиально важная особенность их формирования: все они обязаны своим возникновением процессу взаимодействия геосфер Земли: твердой, водной и органической. Этот факт еще раз подтверждает прозорливую мысль В. И. Вернадского о том, что взаимодействие геосфер – основа всех природных явлений на нашей планете.

Для скоплений ЖМК и КМК оценены линейные параметры, продуктивность по рудной массе и по металлам. Оценки этих параметров по ГПС менее определенные в связи со значительно более сложными условиями их локализации, особенностями морфологии и внутреннего строения. Во всех случаях весь комплекс оцененных параметров как по ЖМК и КМК, так и по ГПС, относится к прогнозным заключениям с различными уровнями дефицита фактографической информации. По мере реализации более детальных исследований, прогнозные оценки, безусловно, изменятся в сторону возрастания или сокращения. Такой неизбежный дрейф однозначно подтвержден всей практикой геологоразведочных работ по месторождениям на суше.

Вместе с тем, совершенно очевидны внушительные масштабы минерализации в Мировом океане и высокое качество руд. Даже при существенном минусовом изменении количественных и качественных показателей потенциал океанических рудоносных объектов как минимум будет сопоставим с потенциалом средних и крупных традиционных месторождений.

Железо-марганцевые конкреции (ЖМК)

ЖМК в виде россыпей залегают на осадочных отложениях в интервале глубин 4 200—5 600 метров. Россыпи представлены конкрециями эллипсоидальной формы с размерами от 2 до 15 см по длинной оси. Их удельное весовое количество составляет

10–15 кг/м 2 . Из-за высокой пористости конкреций их естественная влажность составляет около 30 %. В связи с этим при оценке массы руды необходимо четко оперировать указанием ее влажного или сухого состояния.

Основными металлическими компонентами ЖМК являются марганец, никель, медь и кобальт (таблица 2).

Табл. 2 – Средние содержания металлов в ЖМК основных рудных провинций Мирового океана (%)

№ п/п	Рудные провинции, разведочные районы и участки	Mn	Ni	Cu	Со				
	Тихий океан								
1	Перуанская	33.5	1.24	0.64	0.06				
2	Кларион–Клиппертон, в том числе:	27.5	1.22	1.04	0.21				
2.1	Российский РР (Восточный участок)	30.16	1.42	1.13	0.25				
2.2	Российский РР (Западный участок)	28.5	1.30	0.89	0.22				
2.3	PP «Интерокеанметалл»	30.8	1.31	1.23	0.29				
3	Калифорнийская	24.9	1.07	0.66	0.16				
4	Центрально-Тихоокеанская	21.4	0.84	0.75	0.33				
5	Менарда	19.8	0.75	0.32	0.35				
6	Пенрин	16.7	0.44	0.23	0.39				
7	Южно-Тихоокеанская	14.7	0.34	0.24	0.34				
	Индийский океан								
8	Диамантина	24.0	0.84	0.42	0.21				
9	Центрально-Индоокеанская	22.3	0.91	0.78	0.14				
10	Западно-Австралийская	17.0	0.50	0.40	0.20				

В различных рудных провинциях содержание этих металлов колеблется в достаточно широких интервалах (таблица 2). Кратность этих колебаний составляет для марганца чуть более 2 (14.7–33.5 %), никеля – 4.2 (0.34–1.42 %), меди – 5.3 (0.23–1.23 %), кобальта – 2.8 (0.14–0.39 %) без учета аномально низкого содержания 0.06 % по Перуанской провинции. По имеющимся данным текущего периода изученности наиболее высокие содержания по Мп наблюдаются в рудах большинства провинций Тихого океана (Перуанская, Кларион–Клиппертон, Калифорнийская). По Ni и отчасти Си такая дифференциация выражена менее четко. При сопоставлении средних содержаний основных металлов, определенных путем средневзвешенного по рудной массе, некоторые, достаточно заметные отличия выявляются по кобальту. Его среднее содержание в ЖМК Тихого океана (0.25 %), что более, чем в 1.5 раза, выше по сравнению с содержанием в ЖМК Индийского океана (таблица 3).

Табл. 3 – Средневзвешенные содержания основных металлов ЖМК провинций Тихого и Индийского океанов (%)

№ п/п	Провинции	Mn	Ni	Cu	Со
1	Тихого океана	21.2	0.97	0.76	0.25
2	Индийского океана	21.7	0.83	0.66	0.16
	Соотношение содержания по п. 1 к п. 2	0.98	1.17	1.15	1.56

Разумеется, отмеченные различия по мере накопления новых данных могут измениться вплоть до обратных, с учетом недостаточно представительной выборки по Индийскому океану.

Общие ресурсы сухой рудной массы ЖМК в пределах рассматриваемых провинций на современном уровне изученности оцениваются в 38 900 млн тонн (таблица 4).

Табл. 4 – Ресурсный потенциал главных металлов основных рудных провинций ЖМК (млн т)

№ п/п	Рудные провинции, разведочные районы	Рудная масса (сухая)	Mn	Ni	Cu	Со
	Тихий он	кеан				
1	Перуанская	3 000	1 005	37.2	19.2	1.8
2	Кларион–Клиппертон, в том числе:	17 400	4 785	212.3	181	36.5
2.1	Российский РР (Восточный участок)	369.6	111.5	5.25	4.2	0.85
2.2	Российский РР (Западный участок)	31.6	8.9	0.41	0.3	0.07
2.3	Итого: Российский РР	401.2	120.4	5.66	4.5	0.92
3	Калифорнийская	600	149	6.42	4.0	1.0
4	Центрально-Тихоокеанская	7 000	1 498	58.8	52.5	11.2
5	Менарда	1 500	297	11.3	4.8	5.0
6	Пенрин	3 400	568	15.0	7.8	13.3
7	Южно-Тихоокеанская	3 600	529	12.3	8.6	12.2
	Индийский	і океан				
8	Диамантина	400	96	3.4	1.7	0.8
9	Центрально-Индоокеанская	1 600	357	14.6	12.5	2.2
10	Западно-Австралийская	400	68	2.0	1.6	0.8
	Итого, млн т	38 900	9 352	373.07	293.7	84.8

Большинство скоплений ЖМК находятся в Тихом океане. Площади концентрации ЖМК в Индийском океане по суммарному объему рудной массы и содержанию металлов кратно уступают Тихоокеанским провинциям (таблица 5).

Пропили	Рудная	масса	Mn		Ni		Cu		Со	
Провинции	млн т	%	млн т	%	млн т	%	млн т	%	млн т	%
Тихого океана	36 500	93.8	8 831	94.4	353.3	94.7	277.9	94.6	81.0	95.5
Индийского	2 400	6.2	521	5.6	20.0	5.3	15.8	5.4	3.8	4.5

Табл. 5 – Суммарный ресурсный потенциал ЖМК провинций Тихого и Индийского океанов

По содержанию Мп они заметно уступают Тихоокеанским провинциям Перуанская и Кларион–Клиппертон, но близки к другим провинциям. Такая картина менее четко выражена по Ni и Cu. По содержанию Со провинции Индийского океана заметно уступают провинциям Центрально-Тихоокеанской, Менарда, Пенрин и Южно-Тихоокеанской (см. таблицу 2).

По ресурсам ЖМК в рудной провинции Кларион–Клиппертон сосредоточено около 45 % суммарной рудной массы десяти крупных провинций ЖМК. Объем рудной массы следующей за ней Центрально-Тихоокеанской провинции почти в 2.5 раза меньше. Другие провинции Тихого океана по объему рудной массы уступают провинции Кларион–Клиппертон в 5–6 раз (таблица 4).

Представляет безусловный интерес определение возможной природной ценности металлов, входящих в состав ЖМК. Однако такая оценка может иметь только ориентировочно-прогнозное, а зачастую – ранговое значение. Причин для этого несколько. Во-первых, ЖМК представляют собой готовую рудную массу, не требующую первичного обогащения с целью получения концентрата. Между тем, мировые цены на руду определяются в концентрате с конкретным содержанием полезного компонента. Во-вторых, металлы в составе ЖМК не представлены индивидуальными минеральными агрегатами. Это исключает их первичную переработку с целью получения специализированных по металлам концентратов. Разделение металлов может быть реализовано лишь в процессе металлургического передела с применением индивидуальной технологии. В связи с этими особенностями конечными рыночными продуктами становятся не концентраты, а металлы, цены на которые определяются видами их поставок (чушки, металлические листы и т. д.). Плюс к этому, биржевые цены на металлы подвержены кратковременным значительным колебаниям. В частности, цены на 1 т никеля в 2017 г. составляли около 11 тыс. долл., а в І квартале 2022 г. колебались в пределах 22-25 тыс. долл. В 2017 г. цены на кобальт «взлетели» до уровня 61 тыс. долл. за тонну, а в различные кратковременные периоды февраля 2022 г. колебались в интервале 51–82 тыс. долларов за тонну¹.

Существенной волатильностью отличаются также цены на кобальт. В интервале времени от 2012 до 2016 гг. они находились в пределах 25–31 тыс. долл. за тонну, но в июле 2017 г. взлетели до 61 тыс. долл. за тонну, а за истекший период 2022 г. цена

¹ Единицей биржевых цен на кобальт является килограмм. Однако, с целью обеспечения сопоставимости с ценами рассматриваемой группы металлов, в качестве ценовой единицы принята тонна с пониманием отклонения от строгой корректности.

варьирует в интервале 51–55 тыс. долларов за тонну. Менее волатильны цены на медь. В 2012–2015 гг. они варьировали в пределах 6.5–8.5 тыс. долларов за тонну, но в 2016 г. снизились до уровня 4.3–4.5 тыс. долл., в 2017 г. опять возросли до уровня 6.2 тыс. долларов, а в 2022 г. составили 7.5 тыс. долларов за тонну.

Относительно устойчивая цена на Mn прямым образом связана с консервативностью производственных мощностей черной металлургии.

В связи с указанным комплексом факторов, ценовая оценка металлов, входящих в состав ЖМК, проведена следующим образом. Рассмотрены цены Лондонской биржи на каждый металл за 2012–2020 гг. Исключены аномально высокие и низкие уровни цен, после чего определен интервал их колебаний. В результате получен следующий ряд цен в долларах США за 1 т: Mn - 170-180; Ni - 9 000-10 000; Cu - 5 000-6 000; Co - 25 000-30 000.

В результате дана интервальная оценка природной ценности основных металлов ЖМК (таблица 6). В эту оценку не вошли ресурсы молибдена, среднее содержание которого в ЖМК составляет 0.057 %, что в пересчете на всю рудную массу (38 900 млн т) составит более 22 млн т. С учетом цены за тонну даже в пределах 15–20 тыс. долл., общая ценовая стоимость молибдена составит 330–440 млрд долл.

Пока не учитывается и то обстоятельство, что с основными цветными металлами ЖМК часто ассоциируются попутные компоненты: иттрий, литий, цирконий и драгоценные металлы.

При исключительно корректном научном подходе станет очевидным, что ценовые и другие экономические показатели современной рыночной среды не могут быть применены для анализа природной ценности не доведенных до стадии текущей отработки скоплений полезных ископаемых. Такой корректности препятствует несколько объективных, не ликвидируемых факторов. Во-первых, любые геологические заключения относительно количества и качества руд – вероятностные. Разумеется, что по мере увеличения степени изученности, возрастает вероятность подтверждения определяемых параметров, но никогда не достигает единицы (100 % подтверждаемости), присущих детерминированным физико-математическим функциям.

Более того, задача перевода результатов начальных стадий геологоразведочной информации к виду будущего материального продукта (руды, концентрата, металла, энергетического и других видов сырья) с текущей или краткосрочной (хотя бы на 3 года) потребностью и экономическими показателями — нереальна. Она далеко отложена по времени (как минимум на 10–15 лет). Прогнозы потребностей, объемов и отраслей использования минеральных ресурсов хотя бы с минимальным горизонтом времени (10–15 лет) не входят в рамки экономических интересов современного периода рыночной среды, лежащей в пределах примитивной схемы: «куплю—продам» и обратно.

В связи с этими обстоятельствами совершенно очевидно, что ценовой показатель оценки океанических руд является лишь ранговым ориентиром, указывающим на их исключительную важность для глобальной минерально-сырьевой обеспеченности.

Табл. 6 – Природная ценность основных металлов важнейших провинций ЖМК (млрд долл. США)

№	Провинции, разведочные районы и участки	Mn	Ni	Cu	Со	Mn+Ni+ Cu+Co								
		Т	ихий океан]										
1	Перуанская	1700-1800	335–380	96–115	45–54	2176-2349								
2	Кларион–Клиппертон, в том числе:	8150-8613	191–212	900–1080	912–1095	10153-11000								
2.1	Российский РР (Восточный участок)	190–200	47–52	21–25	21–26	279–303								
2.2	Российский РР (Западный участок)	15–16	3.7–4.1	1.4–1.7	1.8-2.1	21.9–23.9								
2.3	Итого: Российский РР	205–216	50.7–56.1	22.4–26.7	22.8–28.1	300.9–326.9								
3	Калифорнийская	253-268	58-64	20-24	25–30	356–386								
4	Центрально- Тихоокеанская	2547–2696	529-588	263–315	280–336	3619–3935								
5	Менарда	505-535	113–126	24–29	125-150	767–840								
6	Пенрин	966-1022	135–150	39–47	333–399	1473–1618								
7	Южно-Тихоокеанская	899–952	110-122	43-52	305–366	1357–1492								
	Итого: Тихий океан	15020-15886	1471–1642	1385-1662	2025–2430	19901–21620								
		Инд	дийский оке	еан										
8	Диамантина	163-173	30–33	8.5-10.2	20–24	221.5-240.2								
9	Центрально- Индоокеанская	607–643	131–146	63–75	55–66	856–930								
10	Западно- Австралийская	116–122	18–20	8–9.6	20–24	162–175.6								
	Итого: Индийский океан	886–938	179–199	79.5–94.8	95–114	1239.5–1345.8								
		Итого і	по 10 прови	нциям										
		15906-16824	1650-1841	1464.5–1756.8	2120-2544	15906–16824 1650–1841 1464.5–1756.8 2120–2544 21140.5–22965.8								

Кобальтоносные марганцевые корки (КМК)

В Мировом океане выявлены 8 рудных провинций КМК, 6 из которых находятся в Тихом океане и по одной провинции в Индийском и Атлантическом океанах. КМК представлены наслоениями гидроокислов железа и марганца. Они приурочены к выступам коренных пород (представленных в основном базальтами, реже — известняками) подводных поднятий и гор в интервале глубин от 800 до 3 500 м. Рудные залежи локализованы по периметру плосковершинных подводных гор (гайот) и часто группируются на их отрогах. Мощность залежей составляет

10-15 см и лишь в редких случаях достигает 25 см. Удельная продуктивность КМК составляет 60-80 кг/м², а естественная влажность -33-35 %. Основными металлами КМК являются Мп, Ni и Co. Их содержания в рудах провинций Тихого океана колеблется в достаточно узких пределах: Мп около 19-23 %, Ni -0.4-0.5 % и Co -0.5-0.7 %. В рудах провинций Индийского и Атлантического океанов содержание Мп, Ni и Co ниже (таблица 7).

№	Рудные провинции,	Mn	Ni	Со
п/п	разведочные районы и участки			
1	Провинция Лайн (Тихий океан)	19.80	0.41	0.73
2	Гавайская провинция (Тихий океан)	20.43	0.47	0.63
3	Провинция Мидпасифик (Тихий океан)	19.20	0.47	0.62
4	Провинция Уэйк (Тихий океан)	19.50	0.47	0.55
5	Провинция Туамоту (Тихий океан)	18.56	0.49	0.60
6	Магеллановы горы (Тихий океан)	19.80	0.42	0.54
6.1	Российский РР (Магеллановы горы), в том числе:	21.99	0.50	0.56
	гайота Вулканолог	23.21	0.54	0.61
	гайота Коцебу	22.36	0.53	0.58
	гайота Альба	21.30	0.45	0.58
	гайота Говорова	20.56	0.45	0.50
	лучшие 50 блоков	22.78	0.54	0.59
7	Экватор (Индийский океан)	15.30	0.31	0.53
8	КМК Атлантического океана	14.50	0.26	0.36

Табл. 7 – Средние содержания металлов в КМК (%)

Привлекает внимание относительно высокое среднее содержание Со в КМК по сравнению с ЖМК. В некоторых случаях оно весьма близко к сумме средних содержаний Си и Со в ЖМК (таблицы 2, 7), а удельная продуктивность ($60-80 \text{ кг/м}^2$) в 5–6 раз больше этого показателя по ЖМК ($10-15 \text{ кг/м}^2$). Другой отличительной чертой скоплений КМК является широкий батиметрический диапазон их локализации: от 800 до 3500 м, а скопления ЖМК приурочены к батиметрическому интервалу 4200-5600 м. Совершенно очевидны не только батиметрические различия, но и различия между вертикальным размахом минерализации: ЖМК – 1400 м, а для КМК почти в 2 раза больше – 2700 м.

Рудная масса (ресурсный потенциал) в семи главных провинциях КМК более 22 млрд т (таблица 8). Это составляет около 57 % от суммарной рудной массы основных рудных провинций ЖМК Мирового океана (таблицы 5, 8). По оцененному общему количеству металлов КМК уступают ЖМК: по Мп более, чем в 2 раза, по Ni около 4 раз, но по Со превосходят в 1.7 раза (таблицы 4, 8).

№ п/п	Рудные провинции	Рудная масса	Mn	Ni	Со
1	Лайн (Тихий океан)	5 800	1 148.4	23.8	42.3
2	Гавайская (Тихий океан)	2 000	408.6	9.4	12.6
3	Мидпасифик (Тихий океан)	8 400	1 612.8	39.5	52.1
4	Уэйк (Тихий океан)	1 600	312.0	7.5	8.8
5	Туамоту (Тихий океан)	400	74.0	2.0	2.4
6	Магеллановы горы (Тихий океан)	2 500	495.8	10.5	13.5
	Итого: провинции Тихого океана	20 700	4 051.8	92.7	131.7
7	Экватор (Индийский океан)	1 600	244.8	5.0	8.5
	Всего:	22 300	4 296.6	97.7	140.2

Табл. 8 – Ресурсный потенциал главных рудных провинций КМК (млн т)

Даже при исключении показателей по провинциям Индийского океана и учета данных только по Тихоокеанским провинциям, что сделано для обеспечения корректности и однородности выборки, указанное соотношение практически сохраняется.

Суммарная природная ценность металлов КМК (таблица 9) определена аналогично по ЖМК (см. таблицу 6) с использованием интервальных ценовых биржевых котировок за 2012–2020 гг.

Табл. 9 – Природная ценность основных металлов важнейших провинций КМК
(млрд долл. США)

№ п/п	Рудные провинции	Mn	Ni	Со	Mn+Ni+Co
1	Лайн (Тихий океан)	1952–2067	214–238	1058-1269	3224–3574
2	Гавайская (Тихий океан)	695–735	85–94	315–378	1095–1207
3	Мидпасифик (Тихий океан)	2742–2903	356–395	1303-1563	4401–4861
4	Уэйк (Тихий океан)	530-562	68–75	220–264	818–901
5	Туамоту (Тихий океан)	126–134	18–20	60–72	204–226
6	Магеллановы горы (Тихий океан)	843-892	95–105	338-405	1276–1402
	Итого: провинции Тихого океана	6888–7293	836–927	3294–3951	11018–12171
7	Экватор (Индийский океан)	416-441	45-50	212–255	673–746
	Всего:	7304–7734	881–977	3506-4206	11691–12917

Суммарная природная ценность металлов КМК уступает этой величине ЖМК в 1.8 раза (таблицы 6, 8). Практически такое же соотношение имеет место по общей рудной массе. Коррелируемость этих соотношений очевидна, несмотря на отсутствие концентраций Сu в КМК. Природная ценность этого металла в КМК компенсируется высоким содержанием кобальта.

Глубоководные полиметаллические сульфиды (ГПС)

ГПС образуют скопления в зонах с высокой геодинамической и геотермальной активностью земной коры Мирового океана. Наиболее значимые скопления ГПС известны на Западно-Индийском хребте, Восточно-Тихоокеанском поднятии, Галапагосском хребте (приложение, таблицы 1–3). Скопления ГПС по морфологии, особенностям минерального состава и другим характеристикам резко отличаются от площадных залежей ЖМК и КМК. Морфологически ГПС в основном представлены рудными скоплениями башневидной конфигурации и сопками, сложенными первичными сульфидными рудами, реже корками окисленных руд. Они точечно концентрируются в пределах локальных площадей, формируя рудные поля площадью несколько квадратных километров. Рудные тела в пределах рудных полей, а также в собственном объеме, характеризуются высокой неравномерностью распределения полезных компонентов (приложение, таблицы 1–3). Рельеф дна океана на местах локализации рудных тел и в пределах рудных полей исключительно сложно изрезанный.

Минеральный состав скоплений ГПС представлен пиритом (FeS₂), марказитом (FeS₂), пиротином (Fe, S_{n+1}), халькопиритом (CuFeS₂), кубанитом (CuFe₂S₃), сфалеритом (ZnS), борнитом (Cu₂FeS₄), ковелином (CuS), халькозином (Cu₂S), галенитом (PbS). Сульфидный состав обуславливает наличие в рудах золота и серебра, как это имеет место в подавляющем большинстве традиционных месторождений цветных металлов.

Представления о распространении корней ГПС ниже уровня океанического дна часто являются гипотетическими, базируются на общегеологических предположениях, в лучшем случае, на данных, полученных в результате буровых работ на единичных объектах, в частности, на рудном холме ТАГ в Атлантическом океане и некоторых рудных скоплениях Сальвера моря Бисмарка. В связи с этими обстоятельствами, оценки объемов рудной массы отдельных скоплений ГПС, глубины их распространения ниже дна океанов и других параметров весьма приближенные и относятся только к крупным объектам, которые составляют не более 25 % от всего количества известных скоплений ГПС.

Основными полезными компонентами ГПС являются Cu, Zn, Pb, Ag и Au. Однако количественные соотношения и номенклатура указанных металлов подвержены существенным вариациям в различных региональных зонах. В частности, в пределах Индо-Тихоокеанского звена содержание меди часто близко к содержанию цинка или меньше цинка. Между тем в пределах Индо-Атлантического звена часто соотношение содержаний меди и цинка обратное (Cu > Zn), иногда превышение меди над цинком значительное. Здесь в небольших количествах (сотые доли процентов) присутствует свинец. Эти особенности в элементном составе отражают некоторую сглаженную картину и подвержены достаточно заметным вариациям.

В целом в Индо-Атлантическом и Индо-Тихоокеанском обширных сегментах проявлены существенные различия в металлогенической специализации и масштабности пространственной локализации ГПС. Это позволяет разделить ГПС на

два типа: атлантический, проявленный в одноименном океане и западной части Индийского океана; тихоокеанский – в Тихом океане и восточной части Индийского океана.

Первый из них представлен ассоциацией Cu-Zn с переменными количественными соотношениями. Во втором случае вектор направлен на специализацию Zn-Pb с подчиненным количеством меди. Общим для указанных типов является наличие золота и серебра. Однако в ГПС тихоокеанского типа содержание этих драгоценных металлов заметно выше. Эти металлогенические отличия отражают лишь генеральную направленность пространственного распределения минерализации. В детализированном виде анизотропия минерализации весьма многообразна, однако сохраняется устойчивая специализация тихоокеанского типа по свинцу.

Оценка ресурсного потенциала ГПС Мирового океана, как по массе руды, так и дифференцированно по металлам, затруднена в связи с отсутствием достаточного фактического набора данных. Свою лепту вносит неравномерность изученности дна Мирового океана на предмет выявления ГПС. Около 70–75 % уже выявленных объектов практически не изучены как по объемным, так и по качественным показателям. Знания о них ограничиваются лишь фиксацией их наличия.

Высокий уровень колебания цен на металлы на мировом рынке исключает распространение ретроспективных и текущих стоимостных оценок на перспективу. Тем более, что прогнозировать возможные сроки начала освоения ТПИ Мирового океана практически невозможно. Прогнозы социально-экономического и научно-технического развития, изменения векторов мировых потребностей на столь далекий горизонт времени отсутствуют. Очевидны лишь однозначно установленные тенденции экспоненциального роста объемов потребления минеральных ресурсов и расширения их номенклатуры по мере социально-экономического прогресса. Это процесс глобальный и никогда не имел нисходящего тренда. В текущий период можно дать лишь весьма приближенные стоимостные оценки, определяющие их ранг. С целью исключения большого разброса этих оценок нижний порог суммарной стоимости металлов в одной тонне руды принят за 200 долларов США и учтены только ГПС, превышающие этот минимальный уровень (Приложение, таблицы 4–7). Расчеты выполнены для главных металлов, без учета сопутствующих, раздельно для дна Мирового океана, без учета разведочных районов России и отдельно для последних.

Предпочтительность интервальных оценок обусловлена также тем, что первичные расчетные величины (содержания металлов, объемы рудной массы и др.) базируются на точечных определениях, совокупность которых образует статистическую выборку с возможной аппроксимацией некоторым законом распределения (часто нормальным или логнормальным) случайных величин. Такая неизбежность обуславливает симметричное отклонение эмпирических средних значений в пределах принятого доверительного интервала.

Количественные оценки рудной массы также являются прогнозными с учетом изложенного выше комплекса неопределенностей, обусловленных уровнем изученности рудных скоплений. Эти оценки являются ранговыми ориентирами для

определения предпочтений при формировании стратегии дальнейших геологоразведочных работ и по освоению ресурсов.

Однако даже такие количественные оценки не могут быть выполнены для подавляющего большинства скоплений ГПС в связи с их слабой изученностью.

Отсутствие надежных прогнозных данных по объему рудной массы затрудняют, а зачастую и исключают, возможность оценки ресурсного потенциала и природной ценности полей ГПС.

Приведенные оценки рудоносности и природной ценности лишь по 14 полям ГПС свидетельствуют о высоком уровне количественных вариаций по потенциалу рудной массы, соотношению металлов в руде и природной ценности (Приложение, таблицы 8, 9).

Твердые полезные ископаемые разведочных районов Российской Федерации в Мировом океане

Россия является лидером по количеству и срокам заключенных с МОМД ООН контрактов на право закрепления за собой районов для проведения геологоразведочных работ на твердые полезные ископаемые в Мировом океане. Это право России распространяется на все три основных вида рудных объектов: ЖМК, КМК и ГПС.

Разведочный район ЖМК

Разведочный район ЖМК находится в северо-восточной части Тихого океана и входит в состав крупнейшей рудной провинции Кларион—Клиппертон. Разведочный район состоит из двух участков: Восточный и Западный с занимаемыми площадями соответственно 61 200 км² и 13 800 км². Суммарная площадь (75 тыс. км²) меньше максимально допустимой площади добычного участка, установленной МОМД ООН «Правилами поиска и разведки полиметаллических конкреций в Районе» (2013 г.). В связи с этим проблема сокращения и возврата части площадей через установленные промежутки времени в данном случае не возникает.

Помимо собственно Российского разведочного района нашей стране принадлежит на правах долевого участия (25 %) разведочный район совместной организации «Интерокеанметалл» общей площадью 75 тыс. км², расположенный также в пределах провинции Кларион–Клиппертон.

Концентрации ЖМК представлены субпараллельными полосовыми залежами, которые располагаются на субгоризонтальных поверхностях депрессий, платообразных возвышенностях и террасовидных ступенях. Уклоны этих поверхностей не превышают 5–6°. Подстилающие залежи донные осадки представлены нелитофицированными кремнисто-глинистыми отложениями. Залежи имеют субширотное простирание, что совпадает с генеральным направлением структуры коренного ложа всей провинции Кларион–Клиппертон. Границы залежей резкие и контролируются

бровками, основаниями крутых склонов и уступов. По простиранию протяженность залежей составляет 40–80 км, а вкрест простирания — 1–5 км. Выявлены также залежи протяженностью 100 км и более. Мощность (толщина) залежей колеблется в пределах от 2 до 12 см. Плотность концентраций ЖМК составляет 10–15 кг/м². Весь комплекс параметров по морфологии и продуктивности позволяет относить залежи ЖМК к рудным объектам с простой структурой и достаточно равномерным распределением полезных компонентов.

Содержание металлов в Российских разведочных участках превышает средние значения, определенные для провинции Кларион–Клиппертон в целом (таблица 10).

Табл. 10 — Средние содержания и ресурсный потенциал основных металлов ЖМК Российского разведочного района

Средние содержания, %			Ресурсный потенциал, млн т						
Провинция, РР, участок	Mn	Ni	Cu	Co	Рудная масса	Mn	Ni	Cu	Со
1. Кларион–Клиппертон	27.5	1.22	1.04	0.21	17 400	4 785	212.3	181	36.5
1.1. Российский РР – Восточный участок	30.16	1.42	1.13	0.25	369.6	111.5	5.25	4.2	0.92
1.2. Российский PP – Западный участок	28.5	1.30	0.89	0.22	31.6	8.9	0.41	0.3	0.07
2. Итого по 1.1 + 1.2	30.03	1.41	1.11	0.25	401.2	120.4	5.66	4.5	0.99
3. РР «Интерокеанметалл»	30.80	1.31	1.23	0.29	_	_	_	_	_

Примечание: Средние содержания по п. 2 определены как средневзвешенные по рудной массе.

Суммарный объем рудной массы двух российских участков составляет 2.3~% от рудной массы гигантской провинции Кларион–Клиппертон, а по количеству отдельных металлов – 2.5–2.7~% (таблица 10). Это достаточно высокий потенциал, поскольку при исключении из сравнения гигантских провинций Кларион–Клиппертон и Центрально-Тихоокеанская, а также относительно мелких провинций Индийского океана, станет очевидно, что рудный потенциал российских разведочных участков составляет от 11~до~25~% от суммарного потенциала провинций Тихого океана. Доля потенциала по отдельным металлам переменная, но достаточно высокая (таблица 10). По марганцу, никелю и кобальту она приближается к потенциалу Калифорнийской провинции, а по меди даже превосходит. По потенциалу всех четырех металлов Российский разведочный район в 1.2-2 раза превосходит провинции Диамантину и Западно-Австралийскую Индийского океана.

Вывод из этих сравнений однозначный: Россия закрепила за собой весьма перспективный рудный район ЖМК на проведение геологоразведочных работ и нельзя упустить возможность закрепления права на добычные работы. Ресурсный потенциал Восточного участка Российского РР по всем показателям на целый математический порядок превосходит потенциал Западного участка и представляет первоочередной интерес (см. таблицу 6).

Разведочный район КМК

Российский разведочный район КМК находится в северо-западной части Тихого океана между Марианскими и Маршаловыми островами. Район является частью рудной провинции Магеллановых гор. Общая площадь района составляет 3 тыс. км², состоит из 150 блоков по 20 км² каждый. Концентрации КМК образуют 10 кластеров, объединяющих пространственно сближенные блоки (таблица 11).

№ п/п	Рудоконтролирующие морфоструктуры	Количество кластеров	Количество блоков
1	Гайота Говорова	3	55
2	Гайота Альба	3	35
3	Гайота Коцебу	3	40
4	Гайота Вулканолог	1	20
	Всего:	10	150

Табл. 11 – Группы блоков КМК

Концентрации КМК Российского разведочного района по геологическим и морфоструктурным условиям локализации, морфологии залежей и прочим признакам аналогичны другим объектам КМК Мирового океана.

Руководствуясь установленными МОМД ограничениями, уже в 2023 г. Россия должна отказаться от трети общей площади (3 000 км²), включающей 50 блоков, в 2025 г. — еще от 1 000 км² (из оставшихся 2 000 км²) с таким же количеством блоков. После этих сокращений за Россией для реализации добычных работ сохранится 1 000 км² с 50 блоками.

В связи с этим уже в настоящее время возникает задача хотя бы ориентировочного выбора 100 блоков из числа 150. Для этого необходимо учесть ряд конкурирующих показателей. Среди них на первом месте находятся содержание металлов в руде и общая рудная масса. Первый показатель характеризует качество, а второй – объем руды. Характерной особенностью расположенных на суше месторождений является четко выраженное обратное соотношение между этими показателями: крупные по запасам месторождения отличаются относительно низкими содержаниями полезных компонентов по сравнению со средними и, особенно, мелкими. Однако именно из этих немногочисленных крупных месторождений добывается подавляющий объем цветных и драгоценных металлов (таблица 12).

Рассмотрение КМК разведочного района России однозначно свидетельствует об отсутствии четкой дифференциации участков по показателю содержания металлов (таблица 13). Интервалы колебаний содержаний в частично округленном виде находятся в узких пределах: марганец -20–23 %, никель -0.45–0.54 %, кобальт -0.5–0.6 %. Отсутствие дифференциации по качеству руд дает полное основание для выбора объектов по рудной массе. При этом на первое место выходит

гайота Альба (~53 млн т), далее следуют 40 блоков гайоты Коцебу (~48 млн т), 30 блоков гайоты Коцебу и гайота Вулканолог (соответственно 36 и 35 млн т). Из рассмотрения однозначно выпадает гайота Говорова с 16 млн т рудной массы (таблица 13).

Табл. 12 — Распределение относительного количества, запасов и добычи некоторых металлов по месторождениям суши различного масштаба

	ме	Крупны сторожде		Средні	ие местор	ождения	Мелки	іе местор	ождения
Металлы	Кол- во, %	Запасы,	Добыча, %	К-во, %	Запасы,	Добыча, %	Кол- во, %	Запасы,	Добыча, %
Медь	4	66	64	17	26	23	79	8	13
Свинец	2	39	29	10	37	39	88	24	32
Цинк	3	54	42	14	32	42	83	14	16
Молибден	4	51	40	16	37	27	80	12	33
Кобальт	11	82	39	33	15	51	56	3	10
Золото	13	85	70	39	13	19	48	2	

Примечание: Ранжирование месторождений на крупные, средние и мелкие выполнено по декадам, т. е. соседние группы по запасам разнятся на математический порядок.

Табл. 13 — Средние содержания и ресурсный потенциал металлов КМК Российского разведочного района

N₂	Проручиля DD	Сод	ержания	ı, %	Pecypo	сный пот	генциал,	млн т
п/п	Провинция, РР, участок	Mn	Ni	Со	Рудная масса	Mn	Ni	Co
1	Магеллановы горы	19.80	0.42	0.54	2500	495	10.5	13.5
2	Российский РР	21.99	0.50	0.56	151.4	33.29	0.75	0.85
2.1	Гайота Вулканолог (20 блоков)	23.21	0.54	0.61	34.5	8.0	0.19	0.21
2.2	Гайота Коцебу:							
2.2.1	40 блоков	22.36	0.53	0.58	47.9	10.71	0.25	0.27
2.2.2	30 блоков	22.36	0.53	0.58	35.9	8.03	0.19	0.21
2.3	Гайота Альба (55 блоков)	21.30	0.45	0.58	53.2	11.33	0.24	0.30
2.4	Гайота Говорова (55 блоков)	20.56	0.45	0.50	15.8	3.25	0.07	0.08

Примечание: Ресурсный потенциал Российского РР включает сумму по п.п. 2.1; 2.2.1; 2.3; 2.4.

Другими ранжирующими показателями по оценке предпочтения блоков могут быть уровень компактности их пространственного расположения, горнотехнические и батиметрические условия залегания рудной массы. Но по этим показателям четкая дифференциация скоплений КМК не наблюдается.

Проблема отказа в 2023 г. от 50 блоков нуждается в детальном специализированном изучении и экспертном рассмотрении. Однако на данном уровне изученности предпочтение получают блоки гайот Альба и Коцебу с суммарной природной ценностью по металлам 66–72 % от общей природной ценности всех блоков Российского РР (таблица 14).

Табл. 14 – Природная ценность металлов КМК Российского разведочного района
(млрд долл. США)

№ п/п	Участки	Mn	Ni	Со	Mn+Ni+Co
1	Гайота Вулканолог (20 блоков)	13.6–14.4	2.1–2.2	5.3-6.3	21.0–22.9
2	Гайота Коцебу (40 блоков)	18.2–19.3	2.8–2.9	6.8-8.1	27.8–30.3
3	Гайота Альба (35 блоков)	19.3–20.4	2.7–2.8	7.5–9.0	29.5–32.2
4	Гайота Говорова (55 блоков)	5.5–5.9	0.7-0.8	2.0-2.4	8.2–9.1
	Всего по РРР:	56.6-60.0	8.3-8.7	21.6-25.8	86.5-94.5

Ресурсный потенциал КМК разведочного района России достаточно высок и составляет 6–7 % от потенциала крупной рудной провинции Магеллановы горы как по рудной массе, так и по общей массе металлов. Эта пропорция сохраняется также по потенциальной ценности металлов в отдельности (таблица 15).

Табл. 15 — Доля рудного потенциала и природной ценности металлов Российского РР от суммарной по провинции Магеллановы горы, %

№ п/п	Показатель	Доля по массе металлов	Доля по ценности
1	Рудная масса	6.06	_
2	Марганец	6.73	6.70-6.73
3	Никель	7.14	7.05–7.20
4	Кобальт	6.30	6.37-6.40
5	Mn+Ni+Co	6.72	6.68-7.30

Разведочный район ГПС

Российский разведочный район по глубоководным полиметаллическим сульфидам (ГПС) расположен в центральной части Атлантического океана в осевой зоне Срединно-Атлантического хребта. Район включает 100 блоков с площадью 10×10 км каждый. Эти блоки по пространственному расположению сгруппированы в виде кластеров. Общая площадь разведочного района составляет $10\,000$ км².

На этой площади оконтурены 19 рудных полей без учета относительно мелких, разрозненных, пока слабо изученных рудопроявлений. Российские исследования ГПС позволили с различной степенью детальности оценить масштабы рудоносности 16 рудных полей района.

ГПС разведочного района России относятся к атлантическому типу со значительным преобладанием содержания меди над цинком (таблица 16). Обратное соотношение имеет место лишь в одном случае из 16 (рудное поле Ашадзе-1). Основными полезными компонентами, помимо меди и цинка, являются также золото и серебро. Содержания всех указанных металлов подвержены значительным колебаниям, иногда достигающим более одного математического порядка (таблица 16). Даже в случае исключения из рассмотрения аномально высоких и низких содержаний, интервал колебаний находится в пределах 3–20 % по меди, 1–4 % по цинку, 2–10 г/т по золоту и 10–80 г/т по серебру.

Табл. 16 — Средние содержания основных металлов и прогнозная оценка ресурсного потенциала рудных полей ГПС разведочного района России

		Ср	едние с	 одержа	ния		Ресурсь	ный пот	енциал	
№	Рудные поля	Cu, %	Zn, %	Au, г/т	Ag, г/т	Руда, млн т	Си, тыс. т	Zn, тыс. т	Au, T	Ag, T
1	Логачев-2	22.59	15.39	39.00	4.36	0.24	54	37	9.4	1.0
2	Семенов-2	27.47	3.91	19.10	199.30	1.51	415	59	28.8	300.9
3	Логачев-1	26.19	3.29	9.62	196.97	1.64	429	54	15.8	323.0
4	Ашадзе-2	14.31	0.78	7.47	15.12	4.98	713	39	37.3	75.3
5	Ириновское	18.46	2.04	2.23	71.79	0.25	46	1	0.6	17.9
6	Ашадзе-1	9.83	15.46	2.52	77.67	0.24	24	37	0.6	18.6
7	Пюи-де-Фолль	11.77	2.44	0.29	23.41	11.89	1399	290	3.4	391.6
8	Семенов-5	9.44	0.25	2.03	23.41	1.48	139	4	3.0	34.6
9	Семенов-1	4.59	0.23	5.32	36.44	0.99	45	2	5.3	36.1
10	Петербургское	7.30	0.22	0.53	12.26	2.90	211	7	1.5	35.6
11	Юбилейное	4.75	0.67	0.43	16.49	2.73	130	18	1.2	45.0
12	Зенит-Виктория	2.72	1.06	1.12	24.88	15.18	412	160	17.0	377.7
13	Краснов	1.37	1.08	1.32	39.81	12.79	175	138	13.8	509.2
14	Семенов-3	1.56	0.06	0.56	9.54	4.48	70	3	2.5	42.7
15	Семенов-4	1.06	0.09	0.66	9.14	30.51	323	27	20.1	278.9
16	Холмистое	0.82	0.21	0.32	3.25	0.77	6	2	0.2	2.5
	Всего:	4.96	0.92	1.77	25.68	92.58	4591	878	160.5	2490.6

Примечание: В строке «Всего» средние содержания определены как средневзвешенные по рудной массе.

Табл. 17 — Природная ценность металлов в ГПС разведочного района России

			Ценность в 1	сть в 1 т ру	од) інде	ды (долл. США)		Ще	нность в о	5щей рудно	й массе (м.	Ценность в общей рудной массе (млн долл. США)	A)
2	Рудные поля	Cu	Zn	Au	Ag	Cu+Zn+ +Au+Ag	Cu+Au	Cu	Zn	Au	Ag	Cu+Zn+ +Au+Ag	Cu+Au
	Логачев-2	1148–1377 416–431	416–431	1583- 1681	2.0-2.3	3149–3491 2731–3058	2731–3058	270–324	100-104	382–405	0,5-0,6	752–833	652–729
7	Семенов-2	1374–1648 106–109	106-109	775–823	104-106	2359–2686 2149–2471	2149–2471	2075–2490	153–165	1169–1241	157–159	3560-4055	3244–3731
ω	Логачев-1	1310–1571	89–92	391–415	103-104	1893–2182 1701–1986	1701–1986	2145–2574	146–151	641–681	168-171	3100–3577	2786–3255
4	Ашадзе-2	716–859	21–22	304–323	7–8	1048-1212	1048-1212 1020-1182	3565-4278	105–109	1514–1608	39–40	5223-6035	5079–5886
S	Ириновское	923–1108	55–57	94-97	37–38	1109–1300 1017–1205	1017–1205	230–276	2–3	24–26	9-10	265–315	254–302
9	Ашадзе-1	492–590	417–433	417–433 102–109	40-41	1051–1173	594–699	120-144	100-104	24–26	9-10	253–284	144–170
7	Пюи-де-Фолль	902–685	89-99	12–13	12–13	008-629	601–719	6995–8394	783–812	138–147	204–208	8120–9561	7133–8541
∞	Семенов-5	472–566	<i>L</i> -9	28–88	12–13	573–673	555–653	695–834	10-11	122–129	18–19	845–983	817–963
6	Семенов-1	230–275	<i>L</i> -9	216–229	19–20	471–531	446–504	225–270	9-5	215–228	19–20	464–524	440-498
10	Петербургское	365–438	<i>L</i> -9	21–23	<i>L</i> -9	398–475	386–461	1055–1266	19–20	61–65	18–19	1153–1370	1116–1331
11	Юбилейное	239–287	18–19	17–19	6-8	282–334	256–306	082-059	49–50	49–52	23–24	771–906	699–832
12	Зенит-Виктория	136–163	29–30	45-48	12–13	222–254	181–211	2060–2472	432–448	690–733	197–200	3379–3853	2750–3205
13	Краснов	68–82	29–30	53–57	20–21	170–190	121–139	875–1050	373–386	560-595	265–270	2073–2301	1435–1645
14	Семенов-3	78–94	1–2	22-24	4-5	105-125	100-118	350-420	6-8	101–108	22–23	481–560	451–528
15	Семенов-4	53–64	1–2	26–28	4-5	84–99	79–92	1615–1938	73–76	816–866	145–148	2649–3028	2431–2804
16	Холмистое	41–49	6-7	13–14	1–2	61–72	54–63	30–36	9-9	6-8	1	44–52	38–45
	Итого по п.п. 1–16:	I	I	ı	ı	I	I	22955–27546	2369–2460	6514–6919	1294–1322	22955–27546 2369–2460 6514–6919 1294–1322 33132–38247 29469–34465	29469–34465
	Итого по п.п. 1–12	ı	I	ı	I	I	I	20085–24102 1810–1983 5029–5341	1810–1983	5029–5341	861–880	27885–32306 25114–29443	25114–29443

Примечание: В строках «Итого» соответственно по пунктам 1-16 и 1-12 средние содержания определены как средневзвешенные по рудной массе.

Важно отметить, что пропорциональность между объемом рудной массы и содержанием металлов отсутствует. В частности, по рудным полям Логачев-2, Семенов-2, Логачев-1 масса руды составляет соответственно: 0.24; 1.51; 1.64 млн тонн (таблица 16). Но при этом содержания меди достигают: 22.6 %; 27.5 %; 26.2 %. Такие же соотношения имеются по другим металлам. Из этого ряда выпадает лишь рудное поле Холмистое и, в некоторой степени, рудное поле Семенов-1. Указанные, часто обратные, соотношения обуславливают высокую удельную ценность суммы металлов в 1 тонне руды рудных полей с относительно мелкими масштабами минерализации при низкой суммарной природной ценности всего объема металлов (таблица 17).

Подавляющую долю общей природной ценности (69–72 %) формирует медь. На втором месте находится золото. В сумме ценность этих металлов по 16 рудным полям составляет около 90 % от общей ценности. При исключении из расчетов 4 рудных полей (Краснов, Семенов-3, Семенов-4, Холмистое) с относительно низкими содержаниями металлов, суммарная доля ценности меди и золота сохраняет этот подавляющий уровень (таблицы 17, 18).

№	Металлы	Природная ценность, млн долл.	Доля от общей ценности, %
1	Cu	22955–27546	69.28-72.02
2	Zn	2369–24600	6.43-7.15
3	Au	6514-6919	18.09-19.66
4	Ag	1294–1322	3.91–3.46
5	Cu+ Au	29469–34465	88.94–90.11
6	Cu+Zn+Au+Ag	33132–38247	100

Табл. 18 – Доля ценности металлов от суммарной природной ценности

«Правила поиска и разведки полиметаллических сульфидов в Районе», принятые в 2010 г. МОМД ООН, допускают сохранение за контрактором для последующих добычных работ лишь части разведочного района (по РРР площадь не более 2 500 км²). При определении состава оставляемых блоков, как уже было отмечено по КМК, необходимо исходить как от природной ценности суммы металлов в 1 т руды, так и от содержания ценности металлов в общей рудной массе.

В самом благоприятном варианте, когда указанные параметры имеют положительную корреляцию, принятие однозначного решения затруднений не вызывает. Примерами таких рудных полей являются Логачев-1 и Семенов-2. За ними с отставанием по содержаниям металлов следуют рудные поля Ашадзе-2 и Пюи-де-Фолль.

Между указанными двумя оценочными критериями часто имеются противоположные тенденции. При высоких содержаниях меди (22.59 %), цинка (15.39 %) и золота (39 г/т) ГПС рудного поля Логачев-2 имеют низкую интегральную ценность из-за небольшого объема массы руды (0.24 млн т). Близкая ситуация имеет место по ГПС рудного поля Ириновское: высокое содержание меди (18.46 %) и серебра (71.67 г/т),

удовлетворительные содержания цинка (2.04 %) и золота (2.23 г/т) и низкий объем рудной массы (0.25 млн т), что влечет за собой более, чем десятикратно, низкую интегральную ценность по сравнению с объектами высокой ценности.

Имеются рудные поля с низкими содержаниями металлов (Зенит-Виктория, Семенов-4, отчасти Краснов), т. е. с однозначно низким качеством руд, но большими объемами рудной массы (от 12.79 до 30.51 млн т) и, соответственно, достаточно высокой интегральной ценностью.

Соотношение качества и количества руды, из которого складывается интегральная природная ценность объекта, является далеко не единственным критерием выбора. Возникают другие, не менее важные вопросы. Например, ГПС рудного поля Логачев-2 с низкой интегральной ценностью из-за небольшого объема рудной массы (0.24 млн т) обладают уникально высоким содержанием золота (39 г/т) и, соответственно, максимально высокой в рассматриваемом ряду удельной ценностью по сумме металлов в 1 т руды.

Указанными противоречивыми ситуациями не исчерпываются варианты сочетаний качества и количества руды. Тут возникают многочисленные варианты при рассмотрении проблемы в ракурсе отдельных металлов, прогноза конъюнктуры сырья на мировом и региональном рынках.

Очевидно, что с учетом множественности ситуаций, должны быть выполнены исследования по многовариантной экономической оценке уже выявленных ГПС, их классификации по промышленно-генетическим типам, принимая во внимание технико-технологические особенности будущих добычных работ и прогнозов конъюнктуры сырья.

Заключение

Проведенный анализ позволяет сделать следующие выводы:

- Наблюдается тенденция возрастания количества контрактов, заключенных различными странами с МОМД: первоначально на ЖМК (в 2011 г.), затем на ГПС (2011–2016 гг.) и на КМК (2014–2015 гг.). Эта тенденция косвенно подтверждает последовательность выявления рудоносных объектов в Мировом океане по мере разворота морских геологических исследований. Можно предполагать, что в результате продолжения и детализации геологических работ количество выявленных рудоносных объектов возрастет и, возможно, изменятся численные соотношения между контрактами на объекты ЖМК, КМК и ГПС.
- По ресурсам ЖМК в рудной провинции Кларион–Клиппертон сосредоточено около 45 % суммарной рудной массы десяти крупных провинций ЖМК. Другие провинции Тихого океана по объему рудной массы уступают провинции Кларион–Клиппертон в 5–6 раз. В Тихом океане имеется 6 провинций их скопления и по одной провинции в Индийском и Атлантическом океанах. Суммарная природная ценность металлов КМК уступает этой величине ЖМК в 1.8 раза. Низкие концентрации меди

в корках компенсируются высоким содержанием в них кобальта. Скопления ГПС атлантического типа, проявленные в одноименном океане и западной части Индийского океана, представлены ассоциацией Cu-Zn с переменными количественными соотношениями. В Тихом океане преобладает Zn-Pb специализация с подчиненным количеством меди. Общим для указанных типов является наличие золота и серебра, но в ГПС тихоокеанского типа содержание этих драгоценных металлов заметно выше.

• Суммарный объем рудной массы ЖМК участков российского разведочного района составляет 2.3 % от рудной массы крупнейшей провинции Кларион–Клиппертон, а по количеству отдельных металлов — 2.5—2.7 %. Ресурсный потенциал КМК разведочного района России достаточно высок и составляет 6—7 % от потенциала крупной рудной провинции Магеллановы горы как по рудной массе, так и по общей массе металлов. Эта пропорция сохраняется также по потенциальной ценности металлов в отдельности. ГПС разведочного района России атлантического типа отличается значительным преобладанием содержания меди над цинком. Основными полезными компонентами помимо меди и цинка являются также золото и серебро. Содержания всех указанных металлов подвержены значительным колебаниям, иногда достигающих более одного порядка. Преобладающая доля общей природной ценности (69—72 %) приходится на медь, на втором месте находится золото; суммарная ценность этих металлов составляет около 90 % от общей ценности.

Подчеркнем, что ценовая оценка всех типов руд Мирового океана является лишь ранговым ориентиром, но указывает на их исключительную важность для глобальной минерально-сырьевой обеспеченности.

Список литературы

- 1. *Андреев С. И.* Основы минерагении океана // Геология и полезные ископаемые Мирового океана. 2020. Т. 16. № 2 (60). С. 3–23.
- 2. *Мирлин Е. Г., Оганесян Л. В.* Исчерпание химических элементов в земной коре: обоснована ли тревога? // Природа. 2019. № 8. С. 13-19.
- 3. *Оганесян Л. В, Андреев С. И., Мирлин Е. Г.* Системные проблемы изучения и освоения минерально-сырьевого потенциала Российских разведочных районов в Мировом океане // Минеральные ресурсы России: экономика и управление. 2018. № 4. С. 44–52.

Статья поступила в редакцию 23.03.2023, одобрена к печати 14.06.2023.

Для цитирования: *Оганесян Л. В., Мирлин Е. Г.* Минерально-сырьевые ресурсы твердых полезных ископаемых Мирового океана: современные реалии и потенциал рудоносности // Океанологические исследования. 2023. № 51 (4). С. 52–89. https://doi.org/10.29006/1564–2291. JOR-2023.51(4).4.

MINERAL RESOURCES OF SOLID MINERALS OF THE WORLD OCEAN: MODERN REALITES AND ORE POTENTIAL

L. V. Oganesyan ¹, E. G. Mirlin²

¹All-Russian genealogical society, bld. 10, Roschinskaya 2ya str., Moscow, 115191, Russia, e-mail: oganesian@alliance-gr.com; ²Vernadsky state geological museum of RAS, bld. 11, Mokhovaya str., Moscow, 109005, Russia, e-mail: egmmir@gmail.com

Based on quantitative indicators of accumulations of the main types of solid minerals of the World Ocean: iron-manganese nodules, cobalt-rich manganese crusts and deep-sea polymetallic sulfides, an assessment of the ore potential was carried out both on the scale of the entire ocean and within the application areas of the Russian Federation. A price assessment of all types of ocean ores has been carried out, while it is shown that it is only a rank guideline indicating their exceptional importance for global mineral resource security.

Keywords: ferromanganese nodules, cobalt-rich manganese crusts, deep-sea polymetallic sulfides, ore potential

References

- 1. Andreev, S. I., 2020: Fundamentals of ocean mineralogy. *Geology and minerals of the World Ocean*, **16**, 2 (60), 3–23.
- 2. Mirlin, E. G. and L. V. Oganesyan, 2019: Exhaustion of chemical elements in the Earth's crust: is the alarm justified? *Nature*, **8**, 13–19.
- 3. Oganesyan, L. V., S. I. Andreev, and E. G. Mirlin, 2018: Systemic problems of studying and developing the mineral resource potential of Russian exploration areas in the World Ocean. *Mineral Resources of Russia: economics and management*, **4**, 44–52.

Submitted 23.03.2023, accepted 14.06.2023.

For citation: Oganesyan, L. V. and E. G. Mirlin, 2023: Mineral resources of solid minerals of the World Ocean: modern realites and ore potential. *Journal of Oceanological Research*, **51** (4), 52–89, https://doi.org/10.29006/1564–2291.JOR-2023.51(4).4.

Оганесян Л. В., Мирлин Е. Г.

ПРИЛОЖЕНИЕ. Таблица 1 Средние содержания основных металлов в ГПС Атлантического океана

№ п/п	Рудный объект	Cu, %	Zn, %	Au, г/т	Ад, г/т	Примечание
	Cei	верная часть	Срединно-	Атлантичесь	сого хребта	
1	Рейнбоу	7.88	23.66	3.10	361.9	Экономическая
2	Лаки-Страйк	9.03	8.59	0.72	465	зона Португалии
3	24°30′ с.ш. (безымянный)	16.25	4.06	10.40	42.70	
4	Мир (TAG)	8.40	5.52	4.14	118.60	Разведочный
5	Рона (TAG)	0.88	10.00	5.60	102.40	район Франции
6	Снейк Пит	2.80	1.83	1.36	45.30	
7	Брокен Спур	4.82	6.02	0.68	39.80	Нераспределенная часть акватории
	Ю	жная часть	Срединно-А	тлантическо	ого хребта	
8	Нибелунген	24.80	24.20	3.54	154.00	
9	Бейлис Бидс	0.86	23.30	н/д	н/д	
10	Ред Лайэн	2.90	13.90	0.64	67.00	Нераспределенная
11	Комфортлес Коув	2.50	12.40	0.42	40.00	часть акватории
12	Татл Питс	6.60	2.30	0.25	16.00	
13	26°01,2′ ю.ш. (безымянный)	5.00	н/д	н/д	н/д	

ПРИЛОЖЕНИЕ. Таблица 2 Средние содержания основных металлов в ГПС Индийского океана

№ п/п	Рудный объект	Cu,%	Zn,%	Au , г/т	Ад, г/т	Примечание
		3a	падно-Инди	ийский хребо	ет	
1	Ласт Чанс	8.50	н/д	н/д	н/д	Разведочный район
2	Драгон	1.40	4.20	3.00	73.5	КНР
3	Джордан*	1.95	18.43	5.17	752.4	Нераспределенная часть акватории
		Цен	трально-Ин,	дийский хре	бет	
4	MESO	19.94	1.08	1.27	66.5	Нераспределенная часть акватории

^{*} В рудах поля Джордан среднее содержание свинца в количестве 1.18 %.

ПРИЛОЖЕНИЕ. Таблица 3 Средние содержания основных металлов в ГПС Тихого океана

	Эйджик Маунтин	Кребет (
	эйлжик Маунтин		Эксплор	ер		
2 35	SII AMIIK IVIU JIIIIII	8.10	9.00	0.80	112.0	Экономическая зона Канады
1 2 2	Хребты	Хуан-де	е-Фука і	и Эндевер)	
2 M	осрэй (Бэт-Тауэр)	22.25	2.52	0.01	35.5	
3 AS	SHES	5.42	21.44	1.17	84.19	
4 Го	рра Осевая	0.43	22.70	4.90	186.0	
5 Hc	орт Клефт	1.72	24.04	0.24	259.0	Экономическая
6 CA	ASM	0.52	5.48	5.19	192.0	зона США
7 Бэ	эсталь	2.15	8.44	0.16	117.7	
8 Xa	ай-Райз-Балтик	1.94	10.06	0.29	62.2	
9 Ca	аус-Клефт	0.06	11.48	0.13	63.10	
	Га.	лапагос	ский хр	ебет		
10 86	5° з. д. (Галапагос)	4.98	0.14	0.20	10.0	Экономическая зона Эквадора
	Северная часть В	осточно	-Тихоон	сеанского	подняти	Я
11 219	° с. ш. (безымянный)	0.81	32.30	0.17	156.0	Экономическая зона Мексики
12 12	2°50′ с. ш. (безымянный)	9.07	11.20	0.26	57.0	
13 9°0	708′ с. ш. (Медуза)	7.74	8.31	0.24	25.7	
14 8%	40' с. ш. (безымянный)	1.46	14.88	н/д	52.7	
15 14	°09′ с. ш. (безымянный)	2.84	9.00	0.51	н/д	Нераспределенная
16 06	5° с. ш. (безымянный)	2.48	4.42	0.05	84.0	часть акватории
17 12	2°43′ с. ш. (безымянный)	3.08	3.68	0.22	28.0	
18 09	9°40′ с. ш. (безымянный)	3.59	1.99	0.06	9.2	
	Южная часть Во	сточно-	Тихоок	еанского	поднятия	[
19 18	3°30′ ю. ш. (безымянный)	8.20	12.72	0.37	100.1	
20 16	5°43′ ю. ш. (безымянный)	10.20	8.54	0.32	54.1	
21 20)°00' ю. ш. (безымянный)	7.00	12.00	0.36	120.0	
22 219	°54' ю. ш. (безымянный)	2.39	21.74	0.40	120.0	
	3°26' ю. ш. (безымянный)	4.77	14.17	0.60	137.2	Нераспределенная
	7°24′ ю. ш. (безымянный)	11.24	2.13	0.05	537.37	часть акватории
	2°02′ ю. ш. (безымянный)	6.20	11.80	0.29	92.9	
	°25' ю. ш. (безымянный)	9.79	4.28	0.41	62.0	
	0°50′ ю. ш. (безымянный)	5.70	6.15	0.35	54.2	

ПРИЛОЖЕНИЕ. Таблица 4

Природная ценность металлов в 1 тонне руды в ГПС, связанных с СОХ Атлантического океана (долл. США)

№ п/п	Рудный объект	Cu	Zn	Au	Ag	Cu+Zn+Au+Ag	Cu+Au	Примечание
			Северная часть Срединно-Атлантического хребта	гь Срединно-	Атлантичес	кого хребта		
1	Рейнбоу	384–473	639–662	126–134	189–192	1348–1461	520-607	Экономическая зона
2	Лаки-Страйк	452–542	232–241	29–31	24–25	737–839	481–573	Португалии
С	24°30′ с. ш. (безымянный)	813–975	110–114	422–448	22–23	1367–1560	1235–1423	
4	Mup (TAG)	420–504	149–155	168–178	62–63	006-662	588–682	:
5	Рона (TAG)	44–53	270–280	225–241	53–54	592–628	269–294	Разведочный район Франпии
9	Снейк Пит	140–168	49–51	55–59	23–24	267–302	195–227	J
	Итого:	1417–1700	278–600	870–926	160–164	3025–3390	2287–2626	
7	Брокен Спур	241–289	163–169	28–29	20–21	482–508	269–310	Нераспределенная часть акватории
			Южная част	Южная часть Срединно-Атлантического хребта	МТЛАНТИЧЕСК	ого хребта		
8	Нибелунген	1240–1488	653-678	143–153	80-82	2116–2401	1383–1641	
6	Бейлис Бидс	43–52	629–652	Т/Н	н/д	672–704	43–52	
10	Ред Лайэн	145–174	375–389	76–28	35–36	581–627	171–202	Нераспределенная часть
11	Комфортлес Коув	125–150	335–347	17–18	20–21	497–536	142–168	акватории
12	Татл Питс	330–396	62–64	10-11	6-8	410–480	340-407	
13	26°01.2' ю.ш. (безымянный)	250–300	н/д	Т/Н	Н/Д	250–300	250–300	

ПРИЛОЖЕНИЕ. Таблица 5 Природная ценность металлов в 1 тонне руды ГПС, связанных с СОХ Тихого океана (долл. США)

% I/II I/II	Рудный объект	Cu	Zn	Au	Ag	Cu+Zn+Au+Ag	Cu+Au	Примечание
			Северная ча	сть Восточн	о-Тихоокеанс	Северная часть Восточно-Тихоокеанского поднятия		
1	Мэйджик Маунтин	405–486	243–252	32–34	58–59	738–831	437–520	Экономическая зона Канады
2	21°' с. ш. (безымянный)	41–49	872–904	7–8	81–83	1001–1044	48–57	Экономическая зона Мексики
n	Мосрэй (Бэт-Тауэр)	1113–1335	68–71	0,4-0,5	18–19	1199–1425	1113,4–1335,5	
4	ASHES	271–325	909-625	48–58	44-45	942–1028	319–383	
5	Гора Осевая	22–25	613–636	199–211	66-26	931–972	221–237	
9	Норт Клефт	86–103	649–673	9-10	135–137	879–923	95–113	Экономическая зона
7	CASM	26–31	148–153	211–224	100-102	485–510	237–255	США
∞	Бэсталь	108-129	228–236	<i>L</i> -9	61–62	403-434	114–136	
6	Хай-Райз-Балтик	97–116	272–282	12–13	32–33	413–444	109–129	
10	Саус-Клефт	3-4	310–321	9-9	33–34	351–365	8–10	
11	12°50' с. ш. (безымянный)	454–544	302–314	10-11	29–30	795–899	464–555	
12	9°08' с. ш. (Медуза)	387–464	224–233	10-11	13–14	634–722	397–475	
13	8°40' с. ш. (безымянный)	73–88	402–417	н/д	27–28	502–533	73–88	,
14	14°09′ с. ш. (безымянный)	142–170	243–252	21–22	н/д	406–444	163–192	Нераспределенная часть акватопии
15	06° с. ш. (безымянный)	124–149	119–124	2-2,2	44-45	289–320	126–151	
16	12°43′ с. ш. (безымянный)	154–185	99–103	9–10	14–15	276–313	163–195	
17	09°40' с. ш. (безымянный)	180–215	54–56	2–3	4–5	240–279	182–218	

ПРИЛОЖЕНИЕ. Таблица 5 (продолжение)

Nº 11/11	Рудный объект	Cu	Zn	Au	Ag	Cu+Zn+Au+Ag	Cu+Au	Примечание
		I	Ожная часк	пь Восточн	о-Тихоокеана	Южная часть Восточно-Тихоокеанского поднятия		
18	18°30' ю. ш. (безымянный)	410–492	343–356	15–16	52–53	820–917	425–508	
19	19 16°43′ ю. ш. (безымянный)	510-612	231–239	12–13	28–29	781–893	522–625	
20	20 20°00' ю. ш. безымянный)	392–470	324–336	15–16	63–64	794–886	407–486	
21	21°54' ю. ш. (безымянный)	120–143	609-285	16–17	63–64	786–833	136–160	
22	18°26' ю. ш. (безымянный)	238–286	383–397	24–26	71–73	716–782	262–312	Нераспределенная часть
23	23 07°24' ю. ш. безымянный)	629–674	09-85	2-2,2	12–13	701–749	631–676	
24	24 02°02' ю. ш. безымянный)	310–372	319–330	12–13	48–49	689–764	322–385	
25	21°25' ю. ш. (безымянный)	490–587	116–120	17–18	32–33	655–758	509-205	
26	20°50' ю. ш. безымянный)	285–342	166–172	14–15	28–29	493–558	299–357	
27	27 Галапагос (86° з. д.)	249–299	4	6-8	5	266–316	257–308	Экономическая зона Эквадора

ПРИЛОЖЕНИЕ. Таблица 6

Природная ценность металлов в 1 тонне руды ГПС, связанных с СОХ Индийского океана (долл. США)

S -	Рудный объект	nO	Zn	Au	Ag	Cu+Zn+Au+Ag	Cu+Au	Примечание
				Западно-Ин,	 Западно-Индийский хребет	eT		
-	Ласт Чанс	425–510	н/д	н/д	н/д	425–510	425–510	Разведочный район
2	Драгон	70–84	113–118	122–129	38–39	343–370	192–213	KHP
κ	3 Джордан*	98–117	498–516	210–223	392–399	1198–1255	308–340	Нераспределенная часть акватории
				Центрально-Г	Центрально-Индийский хребет	эбет		
4	Мейджик-Маунтин	405–486	243–252	32–35	58–59	738–832	437–521	Нераспределенная часть акватории

^{*} Без учета ценности свинца с содержанием 1,18 %.

ПРИЛОЖЕНИЕ. Таблица 7

Природная ценность металлов в 1 тонне руды ГПС островных дуг и задуговых бассейнов (долл. США)

No. 1	Рудный объект	Cu	Zn	Pb	Au	Ag	Суммарно	Примечание
1				ТИХИ				
1.1				Tpor	Трог Окинава			
1.1.1	1.1.1 Поле Джейд	185–222	543–563	195–214	195–214 195–207 990–1007 2108–2213	990-1007	2108–2213	
1.1.2	1.1.2 Холм Ихея Северный	150-180	848–879	283–311	49–52	242–246	242–246 1572–1668	Экономическая зона
1.1.3	1.1.3 Холм Йонагуни	235–282	459-476	206–225	П/Н	П/Н	900–983	Японии
1.1.4	1.1.4 Холм Минами-Энсей	75–90	346–358	105–115	99–105	47–48	672–716	

ПРИЛОЖЕНИЕ. Таблица 7 (продолжение)

	Рудный объект	Cu	Zn	Pb	Au	$\mathbf{A}\mathbf{g}$	Суммарно	Примечание
		Ост	ровная дуга	Идзу-Бонин	Островная дуга Идзу-Бонино (в том числе задуговый бассейн)	задуговый	бассейн)	
	Поле Хакурей	68–82	1395–1446	117–128	1506–1599	664–677	3750–3932	
	Поле Санрайз	275–330	591–613	120-131	812–862	632–643	2430–2579	(
	Гора Суийо	29-167	471–489	14–15	1126–1195	85–86	2335–2552	Экономическая зона дношии
	Кальдера Кита Байонезе	236–283	467–484	6-8	388–401	85–86	1184–1263	ЛПОНИИ
	Кальдера Мионжиншу	74–88	689–715	96–105	69–73	107–109	1035–1090	
			Марианс	кая островна	Марианская островная дуга (Марианский трог)	ианский трог		
	Поле Форкаст	40–48	181–188	11–12	930–987	185–188	1347–1423	
	Поле Алис-Спринг	69-85	269–279	209–229	32–34	86-96	664–709	Экономическая зона
	Поле У	139–167	118–122	3-4	10-11	16–17	286–321	CIIIA (1 yam, Cebephile Manualicua octaoba)
	Поле Снейл	15–18	144–149	9-9	22–23	85–87	271–283	iviapuanenne oeipoba)
			Бассейн ПАК	MAHYC: B	Бассейн ПАК МАНУС: восточная часть моря Бисмарка	ть моря Бисм	ларка	
	Поле Сольвера-8	280–336	848–879	29–32	633–672	159–162	1949–2081	
	Поле Сольвера-4	615–738	527–546	29–32	572–608	121–123	1864–2047	(
	Поле Сольвера-6	585–702	497–515	Н/Д	654–694	106–108	1842–2019	Экономическая зона Папуа_Новая Гринея
	Поле Сольвера-13	455–546	829–860	69–75	191–203	284–289	1828–1973	папуа-повал г випол
	Поле Сольвера-9	315–378	286–297	Н/Д	808-858	154–157	1563–1690	
	Поле Сольвера-5	275–330	208–216	34–37	564–599	137–139	1218–1321	
	Поле Сольвера-7	185–222	421–437	25–28	414-440	136–138	1181–1265	Orion postocratis correct
	Поле Сольвера-12	365–438	101-26	Π/H	146–155	29–30	637–724	Экономическая зона Папуа-Новая Гвинея
	Поле Сольвера-1 (с зоной 1 North)	387–464	19–20	Д/Н	237–252	15–16	658–752	

ПРИЛОЖЕНИЕ. Таблица 7 (продолжение)

Py	Рудный объект	Cu	Zn	Pb	Au	Ag	Суммарно	Примечание	
		Ĭ	энтр спредин	гга Манус: ц	Центр спрединга Манус: центральная часть моря Бисмарка	асть моря Би	смарка		
Поле С	Поле Сольвера-3	25–30	297–308	14–16	1242–1319	1758–1789	3336–3462		
Поле С	Поле Сольвера-2	99-55	643–666	14–16	430–457	177–180	1319–1385	(
Поле С	Поле Сольвера-10	355–426	381–395	н/д	93–99	79–81	908–1001	Экономическая зона	
Поле С	Поле Сольвера-16	105–126	502–521	н/д	114–121	55–56	776–824	папуа-повая г винся	
Поле С	Поле Сольвера-14	65–78	518–538	н/д	134–142	50–51	608-292		
		ÌÌ	ентр спредин	нга Вильяме	Центр спрединга Вильямез: западная часть моря Бисмарка	сть моря Би	смарка		
Поле (Поле Сольвера-11	75–90	408-423	34–37	53–56	103-105	673–711	Экономическая зона	
Поле (Поле Сольвера-18	15–18	529–549	13–14	6-8	57–58	622–648	Папуа-Новая Гвинея	
			Бас	сейн Вудлар	Бассейн Вудларк (Соломоново море)	во море)			
Fopa d	1.7.1 Гора Франклин	Т/Н	10–11	4–5	533–565	153–156	700–737	Экономическая зона Папуа-Новая Гвинея	
				Островная	Островная дуга Табор-Фени	ени			
Гора	1.8.1 Гора Коникул	0	Cu+Zn+Pb ~3%	%	784–832	9	888–949	Экономическая зона Папуа-Новая Гвинея	
				Соломонов	Соломонова островная дуга	(yra			
Гора	1.9.1 Гора Кана Кеоке	Т/Н	П/Н	Т/н	467–486	3-4	470–500	Экономическая зона Соломоновых о-ов	
				Северо-Фид	Северо-Фиджийский бассейн	сейн			
Поле]	Поле Пер Лашез	430–516	132–159	\sim 1	48–52	25–26	636–754		
Поле І	Поле Вайт Леди	399–479	127–131	~ 1	н/д	$\mathrm{H}/\mathrm{Д}$	527–611	Экономическая зона	
Поле З	Поле Зонне-99 (холмы Корнер Йоги)	29–35	346–359	3-4	146–155	159–162	683–715	Фиджи	
							-		

ПРИЛОЖЕНИЕ. Таблица 7 (продолжение)

1.11		ځ	Zn	Ъh	Δ.	V	Суммарио	Применание
1.11		3)			nx.	8 1 7	Cymma pmo	
				Островн	Островная дуга Тонга	a		
1.11.1 П	Поле Ниуа-2	908-1089	355–368	н/д	436–463	189–198	1888–2118	Экономическая зона
1.11.2 II	1.11.2 Поле Ниуа-3	142-170	444-460	н/д	615–653	150–153	1351–1436	Тонга
1.12				Бассейн	Бассейн Северный Лау	ly ly		
1.12.1	1.12.1 Поле Тину-Сосиси	715–858	220-228	н/д	824–875	90–92	1849–2053	
1.12.2 G	1.12.2 Gone NELCO	451–541	355–368	н/д	831–882	95–97	1732–1888	
1.12.3	.12.3 Поле Пиа	232–278	475–493	н/д	837–889	99–101	1643–1761	(
1.12.4	12.4 Поле Тихи Моана-7	125–150	751–778	н/д	414-440	42–43	1332–1411	Экономическая зона
1.12.5	12.5 Поле Фоуналей (FRSC)	630–756	н/д	н/д	438–465	Д/Н	1068-1221	10414
1.12.6	12.6 Поле Мангатолу	502-602	654–678	1–2	П/Н	9–10	1166–1292	
1.12.7	1.12.7 Поле Мака	268-322	163–169	П/Н	188–200	32–33	651–724	
1.13			Басс	ейн Центра.	Бассейн Центральный и Южный Лау	ный Лау		
1.13.1 II	.13.1 Поле Центральный Лау	29–35	687–713	4-5	П/Н	219–223	939–976	
1.13.2	.13.2 Поле Тахи Моана-5	75–90	346–358	57–62	840–892	365–371	1683–1773	
1.13.3 🗓	Поле Хине Хина	320–384	069-809	2	235–250	67–94	1257–1360	
1.13.4	1.13.4 Поле Тахи Моана-6	20–24	734–762	23–25	305–323	125–127	1207–1261	
1.13.5 🛮	Поле Тахи Моана-1	125–150	751–778	П/Н	414-440	42–43	1332–1411	п.1.13.1 – Центральный Лау;
1.13.6	1.13.6 Поле Тахи Моана-4	ı	46-48	21–23	524–556	265–270	856–897	далее – Южный Лау
1.13.7	1.13.7 Поле Маринер	185–222	648–678	<i>L</i> -9	154–164	41–42	1034–1113	
1.13.8 X	1.13.8 Хребет Сев. Валу Фа (2)	35–42	640-664	4–5	134–142	89–29	870–921	
X 6.81.1	1.13.9 Хребет Сев. Валу Фа (3)	90-108	069-809	6-8	134–142	60–61	900-950	
$.13.10 \Gamma$	1.13.10 Поле Тули Малила	45–54	589–610	10-11	166–177	44-45	854–897	

ПРИЛОЖЕНИЕ. Таблица 7 (продолжение)

3								
п/п	Рудный объект	Cn	Zn	Pb	Au	$\mathbf{A}\mathbf{g}$	Суммарно	Примечание
1.13.11	13.11 Поле Вайт Черт	30–36	521–540	6-8	121–129	45–46	725–760	
1.13.12	13.12 Поле Ваи Лили	166–199	302–313	9-9	81–86	26–57	610–661	
1.13.13	.13.13 Поле Тахи Моана-2	15–18	205–213	17–18	114–121	89-/9	418–438	
1.14				Островная	Островная дуга Кармадок	ĮOK		
1.14.1	1.14.1 Вулкан Бразерс	96–115	273–283	41–45	19–20	177–180	606–643	Экономическая зона Новой
1.14.2	1.14.2 Вулкан Рамбл-II	489–587	3	1	П/Н	П/Н	493–591	Зеландии
2				АТЛАНТИЧ	АТЛАНТИЧЕСКИЙ ОКЕАН	EAH		
2.1			Остров	ная дуга Ско	Островная дуга Скоша (пролив Брансфилд)	Брансфилд)		
2.1.1	2.1.1 Хребет Хук	130–156	319–330	27–30	14–15	99–101	589–632	Зона действия Договора об Антарктиде
3				СРЕДИЗЕ	средиземное море	五		
3.1			T	иренейский	Тиренейский задуговый бассейн	іссейн		
3.1.1	3.1.1 Вулкан Палинуро	19–22	338–350	155–169	136–146	185–188	833–875	Экономическая зона Италии

Оганесян Л. В., Мирлин Е. Г.

ПРИЛОЖЕНИЕ. Таблица 8 Выборочная оценка ресурсного потенциала рудных полей ГПС

№ п/п	Рудное поле	Руда, млн т	Си, тыс. т	Zn, тыс. т	Au, T	Ag, T	Примечание
1		Севері	ная часть	Срединно	-Атланти	ческого хр	ребта
1.1	Рейнбоу	0.75	59.1	177.4	2.32	271.4	
1.2	Лаки-Страйк	0.75	67.7	64.4	0.54	34.9	Экономическая зона
	Всего по эк. 3. Португалии	1.5	126.8	241.8	2.86	306.3	Португалии
1.3	24°30′ с. ш.	0.25	40.6	10.2	2.6	10.7	
1.4	Мир (TAG)	9.98	838.3	550.9	41.32	1113.8	
1.5	Рона (TAG)	3.89	34.2	389.0	21.78	389.3	Разведочный район
1.6	Снейк Пит	1.0	28.0	18.3	1.36	45.3	Франции
	Всего по РР Франции:	15.12	941.1	968.4	67.06	1559.1	
1.7	Брокен Спур	0.40	19.3	24.1	0.27	15.9	Нераспределенная часть акватории
2				Хребет Эк	сплорер		
2.1	Мейджик Маунтин	12.0	972.0	1080.0	9.6	1344	Нераспределенная часть акватории
3			X_{l}	ребет Хуа	н-де-Фука	a	
3.1	Гора Осевая	0.25	1.1	56.8	1.22	46.5	Экономическая зона США
4			Га	лапагосск	ий хребе	Γ	
4.1	86° з. д. (Галапагос)	10.0	498.0	14.0	2.0	100.0	Экономическая зона Эквадора
5		Северна	ая часть В	осточно-Т	Гихоокеан	ского под	КИТКН
5.1	21° с. ш.	0.05	0.4	16.2	0.01	7.8	Экономическая зона Мексики
5.2	12°50′ с. ш.	2.0	181.4	224.0	0.52	114.0	Нераспределенная
5.3	9°40′ с. ш.	0.013	0.5	0.3	н/д	0.1	часть акватории
6		Южна	я часть Вс	сточно-Ті	ихоокеанс	ского подн	ятия
6.1	20° ю. ш.	0.04	2.8	4.8	0.01	4.8	Нераспределенная часть акватории

ПРИЛОЖЕНИЕ. Таблица 9 Выборочная оценка природной ценности рудной массы полей ГПС (млрд. долл. США)

№ п/п	Рудное поле	Cu	Zn	Au	Ag	Сум- марно	Примечание
1		Северн	ая часть Ср	единно-Ат	лантичес	кого хребта	
1.1	Рейнбоу	296–355	478–496	94–100	141–144	1009–1095	
1.2	Лаки-Страйк	339–406	174–180	22–23	18–19	553-628	Экономическая
	Всего по эк. 3. Португалии	635–761	652–676	116–123	159–163	1562–1723	зона Португалии
1.3	24°30′ с. ш.	303–244	28–29	106-212	5–6	342-491	
1.4	Мир (TAG)	4192–5030	1487–1543	1678-1778	580-590	7937–8941	
1.5	Рона (TAG)	171–205	1050-1089	884–939	203–206	2308–2439	Разведочный
1.6	Снейк Пит	140–168	49–51	55-59	23–24	267–302	район Франции
	Всего по РР Франции:	4706–5647	2614–2712	2723–2988	811–826	10854- 12173	
1.7	Брокен Спур	97–116	65–67	11–12	8–9	181–204	Нераспределенная часть акватории
2			Xţ	ебет Экспл	юрер		
2.1	Мейджик Маунтин	4860–5832	2916–3024	390-414	700–712	8866–9982	Нераспределенная часть акватории
3	Хребет Хуан-де-Фука						
3.1	Гора Осевая	6–7	153–159	50-53	24–25	233–244	Экономическая зона США
4			Гала	пагосский	хребет		
4.1	86° з. д. (Галапагос)	2490–2988	38–39	81–86	52–53	2661–3166	Экономическая зона Эквадора
5		Северна	я часть Вос	точно-Тихо	оокеанско	го подняти	Я
5.1	21° с. ш.	2	44–45	0.4	4	50-51	Экономическая зона Мексики
5.2	12°50′ с. ш.	907–1088	605-627	21–22	59-60	1592–1797	Нераспределенная
5.3	9°40′ с. ш.	2–3	~1	н/д	н/д	2–3	часть акватории
6		Южная	часть Вост	гочно-Тихо	океанског	го поднятия	[
6.1	20° ю. ш.	14–17	13–14	~0.5	2–3	29–34	Нераспределенная часть акватории