
.

Orthogonal curvilinear
grid generation

Alexander F. Shchepetkin

Shirshov Institute of Oceanology

NOAA Coastal Marine Modeling Branch

CMMB seminar, 25 May 2021

https://coastaloceanmodels.noaa.gov/seminar/

https://coastaloceanmodels.noaa.gov/seminar/

Officially the problem is solved 30 years ago:

Ives, D. C. and R. M. Zacharias, Conformal mapping and orthogonal grid generation. Paper No. 87-2057,
AIAA/SAE/ASME/ASEE 23RD Joint Propulsion Conference, San Diego, CA, June 1987.
———– J. Propulsion and Power, 1989, Vol. 5, No. 3, pp. 327–333. DOI:10.2514/3.23156 (AIAA-87-2057).

POM suite at Old Dominion University http://www.ccpo.odu.edu/POMWEB/GRID-DATA/GRID.f

Wilkin, J. L., 1987: A computer program for generating two-dimensional orthogonal curvilinear coordinate
. grids. Unpublished report, Woods Hole Oceanographic Institution, Woods Hole, MA 02543

Wilkin, J. and K. S. Hedström, User’s Manual for an orthogonal curvilinear grid generation package.
. IMCS, Rutgers University, 1998, https://marine.rutgers.edu/po/tools/gridpak/grid manual.ps.gz

Gridpak maintained by K. S. Hedström. https://github.com/kshedstrom/gridpak

SeaGrid, by Rich Signell, ?? https://github.com/sea-mat/seagrid

Gridgen by Pavel Sakov, https://github.com/sakov/gridgen-c

Pygridgen (Python interface to gridgen) by Rich Signell, Robert Hetland, ??
. https://github.com/pygridgen/pygridgen

GridBuilder, by Charles James (PIRSA-SARDI) https://austides.com/downloads

MIKE21C (formerly MIKE3D) Curvilinear Grid Generator
. https://manuals.mikepoweredbydhi.help/2017/Water Resources/MIKE21C Scientific documentation.pdf

Unofficially, when newcomers to ROMS community ask about grid generation tool, we do not have much to offer.

https://doi.org/10.2514/3.23156
http://www.ccpo.odu.edu/POMWEB/GRID-DATA/GRID.f
https://marine.rutgers.edu/po/tools/gridpak/grid_manual.ps.gz
https://github.com/kshedstrom/gridpak
https://github.com/sea-mat/seagrid
https://github.com/sakov/gridgen-c
https://github.com/pygridgen/pygridgen
https://austides.com/downloads
 https://manuals.mikepoweredbydhi.help/2017/Water_Resources/MIKE21C_Scientific_documentation.pdf

IZOGRID†: A new tool for setting up orthogonal
curvilinear grids for oceanic modeling

The dilemma: Virtually all modern structured-grid ocean modeling codes are written in orthogonal
curvilinear coordinates in horizontal directions, yet the overwhelming majority of modeling studies are done
using very simple grid setups - mostly rectangular patches of Mercator grids rotated to proper orientation.
Furthermore, in communities like ROMS, we even observe decline in both interest and skill of setting
up curvilinear grids over the long term. This is caused primarily by the dissatisfaction with the existing tools
and procedures for grid generation due to inability to achieve acceptable level of orthogonality errors.
This means underutilization of the full potential of the modeling codes.

To address these issues, a new algorithm for constructing orthogonal curvilinear grids on a sphere for a fairly
general geometric shape of the modeling region is implemented as a compile-once–use forever software package.

Theoretically, one can use Schwartz-Christoffel conformal mapping to project a curvilinear contour onto
rectangle, then draw Cartesian grid in it, and, finally, apply the inverse transform (the one which maps the
rectangle back to the original contour) to the Cartesian grid in order to obtain the orthogonal curvilinear grid
which fits the contour.

However, in the general case, the forward transform is an iterative algorithm of Ives and Zacharias (1989),
and it is not easily invertible, nor it is feasible to apply it to a two-dimensional object (grid) as opposite to
just one-dimensional (contour) because of very large number of operations.

To circumvent this, the core of the new algorithm is essentially an iterative numerical solver for the
inverse problem – to find such distribution of grid points along the sides of curvilinear contour, that the direct
conformal mapping of it onto rectangle turns this distribution into uniform one along each side of the rectangle.
Along the way, this procedure also finds the correct aspect ratio, which makes it possible to automatically
chose the number of grid points in one of the directions to yield locally the same grid spacing in both horizontal
directions. The iterative procedure itself turns out to be multilevel - i.e. an iterative loop built around another,
internal iterative loop. Thereafter, once the distribution of grid points along the perimeter becomes known,
the interior of the grid is filled in by solving a Dirichlet problem.

†IZOGRID = isotropic-resolution, Ives and Zacharias, orthogonal curvilinear grid generator

Orthogonal Curvilinear Grid Generation

basic idea

⇒ ⇒ ⇒

(lat, lon)→(x, y)→ (ξ, η)→ (x, y)→ (lat, lon)

(lat, lon)↔ (x, y) is conformal sphere-to-plane projection: Mercator, Lambert, stereographic, ...

Needs reversible conformal mapping (x, y)↔ (ξ, η) of plane-to-pane for fairly general geometric shape.

Conformal mapping basics
(x, y)↔ (ξ, η)

introduce z = x+ iy and ζ = ξ + iη, then z and ζ must be related by an analytic (i.e. differentiable)
function of complex variable

z = z(ζ) and, conversely ζ = ζ(z)

differentiable means existence of the limit

dz

dζ
= lim

∆ζ→0

z(ζ +∆ζ)− z(ζ)

∆ζ
= lim

∆ζ→0

x(ξ +∆ξ , η +∆η) + iy(ξ +∆ξ , η +∆η)− x(ξ , η)− iy(ξ , η)

∆ξ + i∆η

= lim
∆ζ→0

x+
∂x

∂ξ
∆ξ +

∂x

∂η
∆η + iy + i

∂y

∂ξ
∆ξ + i

∂y

∂η
∆η − x− iy

∆ξ + i∆η

= lim
∆ζ→0

∂x

∂ξ
∆ξ +

∂x

∂η
∆η + i

∂y

∂ξ
∆ξ + i

∂y

∂η
∆η

∆ξ + i∆η
= lim

∆ζ→0

(
∂x

∂ξ
+ i

∂y

∂ξ

)
∆ξ +

(
−i
∂x

∂η
+
∂y

∂η

)
i∆η

∆ξ + i∆η

the limit exists only if the two brackets
(
.
)

are the same,

hence
∂x

∂ξ
=
∂y

∂η
and

∂y

∂ξ
= −

∂x

∂η

these are Cauchy–Riemann conditions

Such functions x = x(ξ, η) and y = y(ξ, η) are called holomorphic.

dz

dζ
=
∂x

∂ξ
+ i

∂y

∂ξ
= −i

∂x

∂η
+
∂y

∂η

=
∂x

∂ξ
− i

∂x

∂η
=
∂y

∂η
+ i

∂y

∂ξ

b
a

si
c

te
x

tb
o

o
k

st
u

ff

Conformal mapping basics: How mapping by an analytic (i.e. differentiable) function
of complex-variable yields preservation of orthogonality?

Let `1, `2 ∈ {ξ, η}-plane be pair of infinitely small vectors,

`1 = (δ1ξ, δ1η)

`2 = (δ2ξ, δ2η)

 such that `1⊥`2 , hence (`1 · `2) = δ1ξ · δ2ξ + δ1η · δ2η = 0

(ξ, η)→ (x, y) transforms them into

`1 → n1

`2 → n2

n1,n2 ∈ {x, y}-plane
n1 = (δ1x, δ1y) =

(
∂ξx δ1ξ + ∂ηx δ1η , ∂ξy δ1ξ + ∂ηy δ1η

)
n2 = (δ2x, δ2y) =

(
∂ξx δ2ξ + ∂ηx δ2η , ∂ξy δ2ξ + ∂ηy δ2η

)
their scalar product

(n1 · n2) =
(
∂ξx δ1ξ + ∂ηx δ1η

)
·
(
∂ξx δ2ξ + ∂ηx δ2η

)
+
(
∂ξy δ1ξ + ∂ηy δ1η

)
·
(
∂ξy δ2ξ + ∂ηy δ2η

)
or

(n1 · n2) =
(
∂ξx ∂ξx+ ∂ξy ∂ξy

)
· δ1ξ · δ2ξ +

(
∂ξx ∂ηx+ ∂ξy ∂ηy

)
· δ1ξ · δ2η

+
(
∂ηx ∂ξx+ ∂ηy ∂ξy

)
· δ1η · δ2ξ + (∂ηx ∂ηx+ ∂ηy ∂ηy) · δ1η · δ2η

using Cauchy–Riemann conditions, substitute ∂ηy → ∂ξx and ∂ξy → −∂ηx,

(n1 · n2) =
(
∂ξx ∂ξx+ ∂ηx ∂ηx

)
· δ1ξ · δ2ξ +

(
∂ξx ∂ηx− ∂ηx ∂ξx

)
· δ1ξ · δ2η

+
(
∂ηx ∂ξx− ∂ξx ∂ηx

)
· δ1η · δ2ξ +

[
∂ηx ∂ηx+ ∂ξx ∂ξx

]
· δ1η · δ2η

=
(
(∂ξx)2 + (∂ηx)2

)
· (δ1ξ · δ2ξ + δ1η · δ2η) = 0

Hence `1⊥`2 ⇔ n1⊥n2 as long as C.-R.s hold.

This applies to any orientation of vectors `1, `2, not necessarily along grid-coordinate lines.

b
a

si
c

te
x

tb
o

o
k

st
u

ff

Conformal mapping basics: preservation of aspect ratio

Let `1, `2 ∈ {ξ, η}-plane be pair of infinitely small vectors,

`1 = (δ1ξ, δ1η)

`2 = (δ2ξ, δ2η)

 hence |`1| : |`2| =
√

(δ1ξ)
2 + (δ1η)2 :

√
(δ2ξ)

2 + (δ2η)2

(ξ, η)→ (x, y) transforms them into

`1 → n1

`2 → n2

n1,n2 ∈ {x, y}-plane
n1 = (δ1x, δ1y) =

(
∂ξx δ1ξ + ∂ηx δ1η , ∂ξy δ1ξ + ∂ηy δ1η

)
n2 = (δ2x, δ2y) =

(
∂ξx δ2ξ + ∂ηx δ2η , ∂ξy δ2ξ + ∂ηy δ2η

)
what about |n1| : |n2| ?

|n1|2 =
(
∂ξx δ1ξ + ∂ηx δ1η

)2
+
(
∂ξy δ1ξ + ∂ηy δ1η

)2

=
((
∂ξx
)2

+
(
∂ξy
)2
)
· (δ1ξ)

2 + 2 ·
(
∂ξx · ∂ηx+ ∂ξy · ∂ηy

)
· δ1ξ · δ1η +

(
(∂ηx)2 + (∂ηy)2

)
· (δ1η)2

using Cauchy–Riemann conditions, substitute ∂ηy → ∂ξx and ∂ξy → −∂ηx,

|n1|2 =
((
∂ξx
)2

+ (∂ηx)2
)
· (δ1ξ)

2 + 2 ·
(
∂ξx · ∂ηx−∂ηx · ∂ξx

)
· δ1ξ · δ1η +

(
(∂ηx)2 +

(
∂ξx
)2
)
· (δ1η)2

=
((
∂ξx
)2

+ (∂ηx)2
)
·
(

(δ1ξ)
2 + (δ1η)2

)
Similarly |n2|2 =

((
∂ξx
)2

+ (∂ηx)2
)
·
(

(δ2ξ)
2 + (δ2η)2

)
Hence |`1| : |`2| = |n1| : |n2| as long as C.-R.s hold.

This applies to any orientation of vectors `1, `2,
not necessarily along grid-coordinate lines.

(
∂ξx
)2

+
(
∂ξy
)2

=
(
∂ξx
)2

+ (∂ηx)2

= (∂ηy)2 + (∂ηx)2 = (∂ηy)2 +
(
∂ξy
)2

Compute

 1/pm = ∆ξ ·
√(

∂ξx
)2

+
(
∂ξy
)2

1/pn = ∆η ·
√

(∂ηx)2 + (∂ηy)2

b
a

si
c

te
x

tb
o

o
k

st
u

ff

Conformal mapping basics...

Cauchy–Riemann conditions ∂ξx = ∂ηy and ∂ξy = −∂ηx yield

∂2x

∂ξ2
+
∂2x

∂η2
=

∂

∂ξ

(
∂x

∂ξ

)
+

∂

∂η

(
∂x

∂η

)
=

∂

∂ξ

(
∂y

∂η

)
+

∂

∂η

(
−
∂y

∂ξ

)
= 0

similarly

∂2y

∂ξ2
+
∂2y

∂η2
= 0

If transform (x, y)↔ (ξ, η) is known only for the boundary,

∂D ↔ ∂G , (x, y) =
(
x(ξ, η) , y(ξ, η)

)
, (x, y) ∈ ∂D , (ξ, η) ∈ ∂G

then inside the domain (x, y) =
(
x(ξ, η) , y(ξ, η)

)
∈ D \ ∂D may be computed by solving a pair of

Dirichlet problems

∂2
ξξx+ ∂2

ηηx = 0 subject to b.c. x = x(ξ, η), (ξ, η) ∈ ∂G

∂2
ξξy + ∂2

ηηy = 0 y = y(ξ, η), (ξ, η) ∈ ∂G

Therefore, for any domain D ∈ {x, y}, which is to be conformally mapped onto domain G ∈ {ξ, η}, there
is one-to-one correspondence between mapping just the outer boundary, and mapping boundary+interior.

When constructing transform (x, y)↔ (ξ, η), it is sufficient to do it only for the boundary, ∂D ↔ ∂G
⇒ huge computational savings, O

(
2(L+M)

)
vs. O

(
L ·M

)
operations

Assuming that in the {ξ, η}-plane the placement of points {ξi,j, ηi,j} corresponds to uniform equally-spaced
Cartesian grid, the resultant placement of all grid points {xi,j, yi,j} of curvilinear grid, both its perimeter
and interior, is entirely and uniquely defined by the shape of its its curvilinear perimeter.

b
a

si
c

te
x

tb
o

o
k

st
u

ff

The outline for orthogonal curvilinear grid generation is therefore as follows:

Construct curvilinear perimeter – specify a set of coefficients for spline polynomials in such a way that
locations of the points on the contour line (x, y) =

(
x(s), y(s)

)
may be computed for any value of s, which

is the coordinate along the curve, yet no set of discrete values {sk} corresponding to the actual grid
points, belonging to the edge of the grid, is specified. This means that at this stage points can be moved
freely along the curve. No conformal mapping is needed at this point.

Populate the curvilinear contour with grid points in such a way, that when applying discrete Schwartz –
Christoffel transform to conformally project the polygon, made of these points, onto a rectangle, the points
ended up equidistantly distributed on the sides of the rectangle. This implies moving the points along
the contour, via an iterative procedure involving algorithm of Ives and Zacharias (IZ) to conformally map
the discrete polygon onto the rectangle, calculate the mismatches between the resultant and the desired
locations of the points on the perimeter of the rectangle, adjust the initial positions of the points on the
curvilinear contour, repeat IZ-transform, recalculate mismatch, re-adjust, and so on...

On the way during these iterations, also adjust the number of grid points in one of the directions (usually
this is η-direction) to match the aspect ratio of the rectangle, Lξ : Lη ≈ Nξ : Nη as accurately as possible.
This yields ∆ξ ≈ ∆η, and, correspondingly, local distances between the adjacent grid points in both
directions of the resultant curvilinear grid will be almost equal to each other as well (isotropic resolution).

Once the above converges to yield the desired placement of grid points on the perimeter, fill the interior
of the grid by solving discrete Dirichlet problem.

Using splines to construct curvilinear contour from a set of user-specified reference points

To constrict cubic spline means that for a given set of values{
fk = f(sk), k = 1, ..., N

}
defined at locations {sk, k = 1, ..., N}, not necessarily equidistant, ∆sk+1/2 = sk+1 − sk > 0, hence ∆sk+1/2 6= const,
find set of derivatives {

dk =
∂f

∂s

∣∣∣∣
s=sk

, k = 1, ..., N

}
such that, assuming that function f = f(s) is represented by a set of cubic polynomials defined individually

within each interval ∆sk+1/2, its second derivative, δ′′k =
∂2f

∂s2

∣∣∣∣
s=sk

is continuous at every junction point s = sk.

To constrict quintic spline means to find a set of first and second derivatives,
{
dk , δ

′′
k , k = 1, ..., N

}
,

such that, assuming that f = f(s) is made of pieces of fifth-order polynomials within each ∆sk+1/2,
its third and fourth derivatives are continuous at junction points s = sk.

Either way, constructing spline is nothing else, but a special way to find derivatives (first, or
both first and second) at the same locations where the values of function are specified.

The quickest ever derivation of cubic spline do not try to find anything
like this in textbooks

Any cubic polynomial f = f(ξ) defined within interval ξ ∈ [−1/2, 1/2]
may be expressed as

f(ξ) = fL · hL(ξ) + fR · hR(ξ) + d̂L · gL(ξ) + d̂R · gR(ξ)

where hL = hL(ξ), hR = hR(ξ), gL = gL(ξ), and gR = gR(ξ) are cubic
polynomials, which satisfy side b.c. according to the table

value ∂/∂ξ

ξ −1/2 +1/2 −1/2 +1/2

hL(ξ) 1 0 0 0

hR(ξ) 0 1 0 0

gL(ξ) 0 0 1 0

gR(ξ) 0 0 0 1

are uniquely defined by the table itself,

hR(ξ) =
1

2
+ ξ

(
3

2
− 2ξ2

)
hL(ξ) =

1

2
− ξ

(
3

2
− 2ξ2

) gR(ξ) =

(
ξ2 −

1

4

)(
ξ +

1

2

)
gL(ξ) =

(
ξ2 −

1

4

)(
ξ −

1

2

)
and are known as Hermite basis functions, hence

f(ξ)
↗
↘

fR, ξ → +1/2

fL, ξ → −1/2

∂f

∂ξ

↗
↘

d̂R, ξ → +1/2

d̂L, ξ → −1/2

Once hL, hR gL, and gR

are known, append table
with side values of their
second derivative

.
value ∂/∂ξ ∂2/∂ξ2

ξ −1/2 +1/2 −1/2 +1/2 −1/2 +1/2

hL(ξ) 1 0 0 0 -6 +6

hR(ξ) 0 1 0 0 +6 -6

gL(ξ) 0 0 1 0 -4 +2

gR(ξ) 0 0 0 1 -2 +4

matching condition for the first derivative at s = sk

1

∆sk−1/2

· lim
ξ→+1/2

∂f

∂ξ︸ ︷︷ ︸
s∈[sk−1,sk]

= lim
s→sk

∂f

∂s
≡ dk ≡ lim

sk←s

∂f

∂s
=

1

∆sk+1/2

· lim
−1/2←ξ

∂f

∂ξ︸ ︷︷ ︸
s∈[sk,sk+1]

d̂R
s∈[sk−1,sk]

∆sk−1/2

= dk =
d̂L
s∈[sk,sk+1]

∆sk+1/2

,

matching second derivative

1

∆s2
k−1/2

· lim
ξ→+1/2

∂2f

∂ξ2︸ ︷︷ ︸
s∈[sk−1,sk]

= lim
s→sk

∂2f

∂s2
= lim

sk←s

∂2f

∂s2
=

1

∆s2
k+1/2

· lim
−1/2←ξ

∂2f

∂ξ2︸ ︷︷ ︸
s∈[sk,sk+1]

s ∈ [sk, sk+1]

. ξ =
s− (sk + sk+1) /2

∆sk+1/2

ξ ∈ [−1/2,+1/2]

. s = ξ ·∆sk+1/2 +
sk + sk+1

2

∆sk+1/2 = sk+1 − sk

express f = f(ξ) via hL, hR, gL, gR, take second derivative, and substitute side values of ∂2/∂ξ2 from table,

s∈[sk−1,sk], s→sk︷ ︸︸ ︷
6fk−1 − 6fk + (2dk−1 + 4dk) ·∆sk−1/2

∆s2
k−1/2

=

sk←s, s∈[sk,sk+1]︷ ︸︸ ︷
−6fk + 6fk+1 − (4dk + 2dk+1) ·∆sk+1/2

∆s2
k+1/2arriving to

dk−1

∆sk−1/2

+

(
2

∆sk−1/2

+
2

∆sk+1/2

)
· dk +

dk+1

∆sk+1/2

= 3 ·

(
fk − fk−1

∆s2
k−1/2

+
fk+1 − fk
∆s2

k+1/2

)

two boundary conditions are required, however, for our purposes, for the reason explained later, we are
interested only in periodic b.c., via index replacement rules: k − 1→ N if k = 1, and k + 1→ 1 if k = N

r.h.s. depends on finite-difference derivatives of the function f , but not the function itself,

dk−1

∆sk−1/2

+

(
2

∆sk−1/2

+
2

∆sk+1/2

)
· dk +

dk+1

∆sk+1/2

= 3 ·

(
1

∆sk−1/2

·
∆f

∆s

∣∣∣∣
k−1/2

+
1

∆sk+1/2

·
∆f

∆s

∣∣∣∣
k+1/2

)
where ∆f/∆s|k+1/2

= (fk+1 − fk)/∆sk+1/2 is finite-difference estimate of derivative.

variational principle: cubic spline constructs function f = f(s) which yields minimum possible value of

Φ[f] =

∫ (
∂2f

∂s2

)2

ds =
N∑
k=1


sk+∆s

k+1/2∫
sk

(
∂2f

∂s2

)2

ds


among all piecewise-cubic, continuously differentiable functions going through specified values fk = f(sk). W

h
y

c
u

b
ic

sp
li
n

e
is

so
sp

e
c

ia
l?

uniform ∆sj+1/2 = const = ∆x yields

1

6
· dj−1 +

2

3
· dj +

1

6
· dj+1︸ ︷︷ ︸

compensate by averaging

=
1

2
·

(
∆f

∆x

∣∣∣∣
j−1/2

+
∆f

∆x

∣∣∣∣
j+1/2

)
︸ ︷︷ ︸

averaged ∆f/∆x

=
fj+1 − fj−1

2∆x

dj computed this way is known as Padé derivative (a.k.a. compact
differencing). It is 4th-order accurate, its truncation error 6 times smaller
than conventional 4th-order-accurate finite-difference.

Fourier component fj = f̂k · eik∆x·j

d̂ ·
(

2

3
+

1

3
cos(k∆x)

)
= f̂ ·

i · sin(k∆x)

∆x
⇒ d̂ = ik · f̂ ·

sin(k∆x)/(k∆x)

(2/3) + (1/3) cos(k∆x)

The quickest derivation of quintic spline ever

Any fifth-order polynomial f = f(ξ), defined within interval ξ ∈ [−1/2,+1/2] may be cast into form

f(ξ) = fL·HL(ξ) + fR·HR(ξ) +
∂f

∂ξ

∣∣∣∣L ·GL(ξ) +
∂f

∂ξ

∣∣∣∣R ·GR(ξ) +
∂2f

∂ξ2

∣∣∣∣L ·DL(ξ) +
∂2f

∂ξ2

∣∣∣∣R ·DR(ξ) −
1

2
≤ ξ ≤

1

2

where the six functions HL(ξ), HR(ξ), GL(ξ), GR(ξ), DL(ξ), and DR(ξ), are polynomials of fifth power,
defined in such a way, that their values, first and second derivatives turn into 0 or 1 on the left and right
ends according to

value ∂/∂ξ ∂2/∂ξ2

ξ −1/2 +1/2 −1/2 +1/2 −1/2 +1/2

HL(ξ) 1 0 0 0 0 0

HR(ξ) 0 1 0 0 0 0

GL(ξ) 0 0 1 0 0 0

GR(ξ) 0 0 0 1 0 0

DL(ξ) 0 0 0 0 1 0

DR(ξ) 0 0 0 0 0 1
hence

f(ξ)
↗
↘

fR, ξ → +1/2

fL, ξ → −1/2

∂f

∂ξ

↗
↘

∂f/∂ξ|R , ξ → +1/2

∂f/∂ξ|L , ξ → −1/2

∂2f

∂ξ2

↗
↘

∂2f/∂ξ2
∣∣R , ξ → +1/2

∂2f/∂ξ2
∣∣L , ξ → −1/2

functions HL(ξ), HR(ξ), GL(ξ), GR(ξ), DL(ξ), and DR(ξ), are Hermite basis functions (yet unknown).

d
o

n
o

t
tr

y
to

fi
n

d
a

n
y

th
in

g
li
k

e
th

is
in

te
x

tb
o

o
k

s

Let p = ξ + 1/2, hence p ∈ [0, 1] ⇔ ξ ∈ [−1/2, +1/2], hence

P(p) = Ap5 +Bp4 + Cp3 ⇒ P
∣∣∣
p=0

= 0 ,
∂P

∂p

∣∣∣∣
p=0

= 0 ,
∂2P

∂p2

∣∣∣∣
p=0

= 0

p = 1 HR GR DR

P(p) = A + B + C = 1 0 0
∂P/∂p = 5A + 4B + 3C = 0 1 0
∂2P/∂p2 = 20A + 12B + 6C = 0 0 1

HR(p) = 6p5 −15p4 +10p3

GR(p) = −3p5 +7p4 −4p3

DR(p) = p5/2 −p4 +p3/2

HL(p) = HR(1− p)
GL(p) = −GR(1− p)
DL(p) = DR(1− p)

HR(ξ) =
1

2
+ξ

(
15

8
− 5ξ2 + 6ξ4

)
HL(ξ) =

1

2
−ξ
(

15

8
− 5ξ2 + 6ξ4

)
GR(ξ) =

(
1

4
− ξ2

)[
ξ

(
3ξ2 −

7

4

)
+

(
ξ2

2
−

5

8

)]
GL(ξ) =

(
1

4
− ξ2

)[
ξ

(
3ξ2 −

7

4

)
−
(
ξ2

2
−

5

8

)]
DR(ξ) =

1

2

(
1

4
− ξ2

)2(1

2
+ξ

)
DL(ξ) =

1

2

(
1

4
− ξ2

)2(1

2
−ξ
)

value ∂/∂ξ ∂2/∂ξ2 ∂3/∂ξ3 ∂4/∂ξ4

ξ −1/2 +1/2 −1/2 +1/2 −1/2 +1/2 −1/2 +1/2 −1/2 +1/2

HL(ξ) 1 0 0 0 0 0 -60 -60 +360 -360

HR(ξ) 0 1 0 0 0 0 +60 +60 -360 +360

GL(ξ) 0 0 1 0 0 0 -36 -24 +192 -168

GR(ξ) 0 0 0 1 0 0 -24 -36 +168 -192

DL(ξ) 0 0 0 0 1 0 -9 -3 +36 -24

DR(ξ) 0 0 0 0 0 1 +3 +9 -24 +36

matching condition for the first derivative at s = sk

lim
s→sk

∂f

∂s
=

1

∆sk−1/2

·
∂f

∂ξ

∣∣∣∣R︸ ︷︷ ︸
s∈[sk−1,sk], s→sk

= dk ≡
∂f

∂s

∣∣∣∣
s=sk

=
1

∆sk+1/2

·
∂f

∂ξ

∣∣∣∣L︸ ︷︷ ︸
sk←s, s∈[sk,sk+1]

= lim
sk←s

∂f

∂s

matching the second derivative

lim
s→sk

∂2f

∂s2
=

1

∆s2
k−1/2

·
∂2f

∂ξ2

∣∣∣∣R︸ ︷︷ ︸
s∈[sk−1,sk], s→sk

= δ′′k ≡
∂2f

∂s2

∣∣∣∣
s=sk

=
1

∆s2
k+1/2

·
∂2f

∂ξ2

∣∣∣∣L︸ ︷︷ ︸
sk←s, s∈[sk,sk+1]

= lim
sk←s

∂2f

∂s2

continuity of the third derivative at s = sk

lim
s→sk

∂3f

∂s3
=

1

∆s3
k−1/2

·
∂3f

∂ξ3

∣∣∣∣R︸ ︷︷ ︸
s∈[sk−1,sk]

=
∂3f

∂s3

∣∣∣∣
s=sk

=
1

∆s3
k+1/2

·
∂3f

∂ξ3

∣∣∣∣L︸ ︷︷ ︸
s∈[sk,sk+1]

= lim
sk←s

∂3f

∂s3

express f(ξ) via HL(ξ), ...,DR(ξ), take its third derivative, and substitute side-values for ∂3/∂ξ3 from the table

substitute ξ = +1/2, k − 1 for L, k for R, s ∈ [sk−1, sk], s→ sk︷ ︸︸ ︷
60fk − 60fk−1 − 36∆sk−1/2dk − 24∆sk−1/2dk−1 + 9∆s2

k−1/2
δ′′k − 3∆s2

k−1/2
δ′′k−1

∆s3
k−1/2

=
60fk+1 − 60fk − 24∆sk+1/2dk+1 − 36∆sk+1/2dk + 3∆s2

k+1/2
δ′′k+1 − 9∆s2

k+1/2
δ′′k

∆s3
k+1/2︸ ︷︷ ︸

sk ← s, s ∈ [sk, sk+1], substitute ξ = −1/2, k for L, k + 1 for R

moving unknowns to the left, knowns to the right,

−
2

5
·
dk−1

∆s2
k−1/2

−
3

5
·

(
1

∆s2
k−1/2

−
1

∆s2
k+1/2

)
· dk +

2

5
·
dk+1

∆s2
k+1/2

−
1

20
·
δ′′k−1

∆sk−1/2

+
3

20
·
(

1

∆sk−1/2

+
1

∆sk+1/2

)
· δ′′k −

1

20
·
δ′′k+1

∆sk+1/2

=
fk+1 − fk
∆s3

k+1/2

−
fk − fk−1

∆s3
k−1/2

continuity of the fourth derivative at s = sk

1

∆s4
k−1/2

·
∂4f

∂ξ4

∣∣∣∣R︸ ︷︷ ︸
s∈[sk−1,sk]

=
∂4f

∂s4

∣∣∣∣
s=sk

=
1

∆s4
k+1/2

·
∂4f

∂ξ4

∣∣∣∣L︸ ︷︷ ︸
s∈[sk,sk+1]

express f(ξ) via HL(ξ), ...,DR(ξ), take its fourth derivative, and substitute side-values for ∂4/∂ξ4 from the table

substitute ξ = +1/2, k − 1 for L, k for R, s ∈ [sk, sk−1, sk], s→ sk︷ ︸︸ ︷
360fk − 360fk−1 − 192∆sk−1/2dk − 168∆sk−1/2dk−1 + 36∆s2

k−1/2
δ′′k − 24∆s2

k−1/2
δ′′k−1

∆s4
k−1/2

=
−360fk+1 + 360fk + 168∆sk+1/2dk+1 + 192∆sk+1/2dk − 24∆s2

k+1/2
δ′′k+1 + 36∆s2

k+1/2
δ′′k

∆s4
k+1/2︸ ︷︷ ︸

sk ← s, s ∈ [sk, sk+1], for ξ = −1/2, k + 1 for R, k for L

moving unknowns to the left, knowns to the right

7

15
·
dk−1

∆s3
k−1/2

+
8

15
·

(
1

∆s3
k−1/2

+
1

∆s3
k+1/2

)
· dk +

7

15
·
dk+1

∆s3
k+1/2

+
1

15
·
δ′′k−1

∆s2
k−1/2

+
1

10
·

(
1

∆s2
k−1/2

−
1

∆s2
k+1/2

)
· δ′′k −

1

15
·
δ′′k+1

∆s2
k+1/2

=
fk+1 − fk
∆s4

k−1/2

+
fk − fk−1

∆s4
k+1/2

Combining continuity conditions the third and fourth derivatives

ak · dk−1 + bk · dk + ck · dk+1 = fk ∀ k = 1, ..., N (see below)

where

ak =


7

15∆s3
k−1/2

1

15∆s2
k−1/2

−
2

5∆s2
k−1/2

−
1

20∆sk−1/2

 ck =


7

15∆s3
k+1/2

−
1

15∆s2
k+1/2

2

5∆s2
k+1/2

−
1

20∆sk+1/2

 dk =

 dk

δ′′k



bk =


8

15
·

(
1

∆s3
k−1/2

+
1

∆s3
k+1/2

)
1

10
·

(
1

∆s2
k−1/2

−
1

∆s2
k+1/2

)

−
3

5
·

(
1

∆s2
k−1/2

−
1

∆s2
k+1/2

)
3

20
·
(

1

∆sk−1/2

+
1

∆sk+1/2

)
 fk =


fk+1 − fk
∆s4

k−1/2

+
fk − fk−1

∆s4
k+1/2

fk+1 − fk
∆s3

k+1/2

−
fk − fk−1

∆s3
k−1/2


this is a well posed (diagonally dominant) block tri-diagonal system of linear equations

two boundary conditions are required at the ends, k = 1, and k = N , however, for our purpose of building
contour of the grid, we are interested only in periodic closure conditions, which can be expressed via
index-folding rules:

for k = 1 replace k − 1 → N
for k = N replace k + 1 → 1

method of solution is similar to tri-diagonal solver for cubic spline, except that operations with numbers are
replaced with operation over vectors and 2× 2 matrices (division by multiplication of matrix inverse)

Fourier analysis of accuracy for quintic spline: assume uniform ∆sj = const = ∆x, hence

7

15
dj−1 +

16

15
dj +

7

15
dj+1 +

∆x

15
δ′′j−1 −

∆x

15
δ′′j+1 =

fj+1 − fj−1

∆x

−
2

5∆x
dj−1 +

2

5∆x
dj+1 −

1

20
δ′′j−1 +

3

10
δ′′j −

1

20
δ′′j+1 =

fj+1 − 2fj + fj−1

∆x2

Substitute fj = f̂k · eik∆x j , dj = d̂k · eik∆x j and δ′′j = δ̂′′k · eik∆x j into the above,

d̂k ·
(

16

15
+

14

15
cos(k∆x)

)
−

2

15
∆x · δ̂′′k · i sin(k∆x) = f̂k ·

2i · sin(k∆x)

∆x
4

5∆x
· d̂k · i sin(k∆x) +δ̂′′k ·

(
3

10
−

1

10
cos(k∆x)

)
= 2f̂k ·

cos(k∆x)− 1

∆x2

where d̂k and δ̂′′k are the unknowns. Solving it as a 2× 2 linear system

d̂k = f̂k ·
i sin(k∆x)

∆x
·

25 + 5 cos(k∆x)

16 + 13 cos(k∆x) + cos2(k∆x)

δ̂′′k = f̂k ·
20

∆x2
·

cos(k∆x) + cos2(k∆x)− 2

16 + 13 cos(k∆x) + cos2(k∆x)

Taylor expansion for k∆x� 1 indicates the sixth and the fourth order of accuracy respectively,

d̂k = ik · f̂k ·
30− 15

2
(k∆x)2 + 21

24
(k∆x)4 − 17

112
(k∆x)6 + ...

30− 15
2

(k∆x)2 + 21
24

(k∆x)4 − 1
16

(k∆x)6 + ...

δ̂′′k = −k2 · f̂k ·
30− 15

2
(k∆x)2 + 11

12
(k∆x)4 − ...

30− 15
2

(k∆x)2 + 21
24

(k∆x)4 − ...

F
o

u
ri

e
r

a
n

a
ly

si
s

o
f

q
u

n
ti

c
sp

li
n

e

Left: Fourier image multiplier K = K (k∆x) (ideally should be K = k) for the first derivative computed by cubic
(bold solid line) and quintic (bold with short dashes) splines. For comparison: five thin lines with short dashes
correspond to conventional finite-difference schemes of 2nd, 4th, 5th, 8th, and 10th orders of accuracy. Three
thin lines with long dashes above them are for compact-differencing schemes of Lele (1992): 6th- and 8th-order
of accuracy tri-diagonal schemes, 10th-order pentadiagonal (correspond to curves e,f,h in Fig 1 from Lele, 1992).

Right: same, but for image multiplier of the second derivative δ′′ shown here as K =
√

K 2(k∆x) (ideally K = k).

Setting up perimeter of the future grid

Building map Black sea. Rotated Mercator projection

Defining contour: cubic (dashed line); quintic (solid) spline Cartesian system of user coordinates

User input file to generate map and contour in the previous page

mode=1 latlongrid=2 spline type=4 npass=4 selector of the regime
proj=ME rlat=43.75 rlon=34.5 rota=0 map projection parameters
west edge=26.5 east edge=43
south edge=40.75 north edge=47.25

geographic extents of the map

nx=100 ny=66 dimensions of the future grid
uscale=0.001 scale factor for user coordinates
------ end of the header

-97 -26 south-west
-77 -39.5
-44 -46
-9 -31.5
+25 -44
+75 -47
+104 -33 < south-east
+89.2 -14
+55 +10
+40 +30
+57.5 +63.5 < north-east
+3 +47
-40 +60 < north-west
-74 +12
-84 -6.2

Cartesian coordinates
(user system) of reference
points for contour spline
(tips of red arrows)

o
n

c
e

u
n

fo
ld

e
d

,
p

e
ri

o
d

ic
b

.c
.

a
t

th
e

e
n

d
s

{ k
−

1
→
N
,

if
k

=
1

k
+

1
→

1
,

if
k

=
N

⇒
e

x
a

c
t

9
0

-d
e

g
re

e
a

n
g

le
s

a
t

th
e

c
o

rn
e

rs

sp
li
n

e
ro

u
ti

n
e

a
c
tu

a
ll
y

d
o

e
s

n
o

t
k

n
o

w
a

n
y
th

in
g

a
b

o
u

t
th

e
c
o

rn
e
rs

E
x

a
c

t
9

0
-d

e
g

re
e

a
n

g
le

s
a

t
si

d
e

ju
n

c
ti

o
n

s
n

o
m

a
tt

e
r

w
h

a
t!

...so it looks straightforward, but actually it is not:

Spline in 1D: f = f(s)
given set points {sk, k = 1, ..., N}
and set of values {fk = f(sk), k = 1, ..., N}

construct set
{
dk = df/ds

∣∣
s=sk

}
such that second derivative d2f/ds2

maintain continuity at every s = sk.

2D spline dilemma
given set of points {(xk, yk) , k = 1, ..., N}

construct continuous curve (x, y) =
(
x(s), y(s)

)
such that it goes through all (xk, yk), and
its derivatives dx/ds, d2x/ds2, dy/ds, d2y/ds2

satisfy matching conditions to yield
(i) smoothness (no kinks) and
(ii) continuity of curvature at all (xk, yk).

derivatives d/ds with respect to what ???

coordinate s is not a-priori defined

..
.i

f
it

c
a

n
b

e
im

a
g

in
e

d
,

it
c

a
n

b
e

d
o

n
e

!
L

o
c
k

h
e
e
d

M
a

rt
in

N
o

w
a

d
a

y
s

th
is

is
c

a
ll
e

d
B

O
O

T
S

T
R

A
P

P
IN

G
!

Possible solutions:

”index” coordinate, sk = k, regardless of the actual distances between consecutive points

coordinate based on straight-line distances

s1 = 0 , sk+1 = sk +
√

(xk+1 − xk)2 + (yk+1 − yk)2 , k = 1, ..., N − 1

coordinate using circular ark distances

draw circular arc for each three consecutive points

compute its radius

1

rk
=

2 ·
(
∆xk−1/2 ·∆yk+1/2 −∆xk+1/2 ·∆yk−1/2

)√√√√√
(
∆yk+1/2 ·∆s2

k−1/2
+∆yk−1/2 ·∆s2

k+1/2

)2

+
(
∆xk+1/2 ·∆s2

k−1/2
+∆xk−1/2 ·∆s2

k+1/2

)2

where

∆xk+1/2 = xk+1 − xk
∆yk+1/2 = yk+1 − yk

}
∆s2

k+1/2
= ∆x2

k+1/2
+∆y2

k+1/2

Radius (curvature 1/rk) is considered being positive
(negative), if turning to the left(right), when going in
the direction of index k increase; There is no singularity,
1/rk = 0, if the three points are on a straight line.

For each segment (x, y)k → (x, y)k+1 there are two
estimates of curvature, 1/rk and 1/rk+1. Average them

1

rk+1/2

=
1

2
·
∣∣∣∣ 1

rk
+

1

rk+1

∣∣∣∣ ,
if the two are of the opposite signs, so be it:
the resultant curvature is less than either of them.

Compute the distance along the arc segment

_
∆sk+1/2 = 2rk+1/2 · arcsin

(
∆sk+1/2

2rk+1/2

)
no singularity: when 1/rk+1/2 → 0, simply

_
∆sk+1/2 → ∆sk+1/2

.

”true” distance along the curve: requires iterative solver

set initial approximation for
{
∆sk+1/2

∣∣ k = 1, .., N
}

iterate



construct splines x = x(s) and y = y(s)

recompute
{
∆sk+1/2

}
by integrating distances

along the curve within each segment

∆s(new)
k+1/2 =

(xk+1,yk+1)∫
(xk,yk)

√(
dx

ds

)2

+

(
dy

ds

)2

ds

s(new)
1 = 0 , s(new)

k+1 = s(new)
k +∆s(new)

k+1/2

substitute
{
∆s(new)

k+1/2

}
→
{
∆sk+1/2

}
and

{
s(new)
k

}
→ {sk}

computing integral

(xk+1,yk+1)∫
(xk,yk)

√(
dx

ds

)2

+

(
dy

ds

)2

ds ≈
M−1∑
j=1

√(
xj+1 − xj

)2
+
(
yj+1 − yj

)2
implies filling curve with

spline-interpolated points
{

(xj, yj)
∣∣ j = 1, ...,M

}
, where (xj=1, yj=1) = (xk, yk) and

(
xj=M , yj=M

)
= (xk+1, yk+1)

to accelerate convergence, summation of straight-line distances may be replaced with circular arc distances;

converges to yield

(
dx

ds

)2

+

(
dy

ds

)2

≡ 1

Proof of continuity of curvature:
build spline, fill it with points,
compute vector of curvature using consecutive
triplets of points

for each point (xk, yk) we know radius rk and
direction to the center.

Define vector of curvature as

−const ·
1

|rk|
· nk

where nk is unit vector pointing to the center;
const is a arbitrary scaling factor;
negative sign is to make it point to the convex
side of the curve to avoid line interference.

Then track down envelope formed by
the ends of all these vectors.

define

∆xk+1/2 = xk+1 − xk
∆yk+1/2 = yk+1 − yk

}
∆s2

k+1/2
= ∆x2

k+1/2
+∆y2

k+1/2

then

1

rk
=

2 ·
(
∆xk−1/2 ·∆yk+1/2 −∆xk+1/2 ·∆yk−1/2

)√√√√√
(
∆yk+1/2 ·∆s2

k−1/2
+∆yk−1/2 ·∆s2

k+1/2

)2

+
(
∆xk+1/2 ·∆s2

k−1/2
+∆xk−1/2 ·∆s2

k+1/2

)2

positive, if turning to the left, when going in the direction
of index k increase; negative otherwise; 0 if the three points
are on a straight line

unit vector from (xk, yk) to the center

n(x)
k = −

∆yk+1/2 ·∆s2
k−1/2

+∆yk−1/2 ·∆s2
k+1/2√

(.)2 + (.)2

n(y)
k = +

∆xk+1/2 ·∆s2
k−1/2

+∆xk−1/2 ·∆s2
k+1/2√

(.)2 + (.)2

there is no singularity when curvature 1/rk → 0

cubic, true curve distance

quintic, true distance

.

cubic, index coord

quintic, index coord.

.

Conformal mapping: Why do we need it?

At this moment curvilinear grid contour is defined in sense that coefficients for all piecewise
polynomials of which contour is comprised are known.

But the contour is not populated with grid-points yet.

Suppose we know number of grid points in each direction, L and M , and we populate the contour
by distributing points uniformly along each side.

Then solve the Dirichlet problem

xi+1,j − 2xi,j + xi−1,j

∆ξ2
+
xi,j+1 − 2xi,j + xi,j−1

∆η2
= 0 ∀i, j ∈ [2, ..., L− 1]× [2, ...,M − 1]

similar for yi,j

...well, how do we know values of ∆ξ and ∆η?

...obviously only their ratio ∆ξ/∆η matters.

...let’s pretend that ∆ξ/∆η = 1 and try it any way

in fact, we use L and M that yield the correct ratio ∆ξ/∆η (to be explained later),
but still we would not get it right

. uniform grid-point distribution along each side ⇒ not orthogonal!
Does not work!

. ← even worse, wrapped

Conformal mapping: Discrete Schwartz–Christoffel transform explained

Elementary hinge transform in terms of absolute value and argument

Let z = zk + |z − zk| · eiγ be an arbitrary point on complex plane.

Transform z′ = zk +
(z − zk)P

(zk − zk−1)P−1
where P =

π

π − α
, conversely, α = π

P − 1

P
,

hence z′ − zk =
|z − zk|π/(π−α)

|zk − zk−1|π/(π−α)−1
· exp

{
i
[
β +

π

π − α
· (γ − α− β)︸ ︷︷ ︸
γ ′

]}

γ′ = β + π + P (γ − β − π) = β +
π

π − α
· (γ − α− β)

turns ∠zk−1 zk zk+1 into straight line, while zk and zk−1 do not move,

zk+1 − zk = |zk+1 − zk| · ei(α+β) γ = α+ β → γ′ = β

zk−1 − zk = |zk − zk−1| · ei(π+β) γ = π + β → γ′ = π + β

Inverse transform: replace P → 1/P

for absolute value it is obvious.

argument: apply both consecutively,
γ′ = β + π + P · (γ − β − π)

γ′′ = β + π +
1

P
· (γ′ − β − π)

substitute γ′ from the first into the second yields γ′′ = γ for any P , β

Substitution γ′ = β yields γ′′ = β + π − π/P = β + π − (π − α) = α+ β,
i.e. direction β to z′k+1 rotates back to its original direction to zk+1.

arguments are manipulated
separately from absolute values

⇒ any ray, originating from
the hinge point zk, remains
straight line

.

.

.

.

transform z′ = zk +
e+iβ−i(α+β)·π/(π−α)

|zk − zk−1|π/(π−α)−1
·
(
z − zk

)π/(π−α)
to straighten out ∠zk−1 zk zk+1 and its inverse

Straightening out a polyline: the transform function z′ = G (z) is defined by a triplet of points
zk−1, zk, zk+1, therefore z′ = Gzk−1,zk,zk+1(z)

z′ = Gzk−1,zk,zk+1(z) is analytical, except in its hinge point z = zk

the hinge point zk is a branch point of a multi-valued function z′ = Gzk−1,zk,zk+1(z), therefore the transform
cannot be applied to the entire plane, but only to a single-connected part of the plane on one side from
the angle ∠zk−1, zk, zk+1

a tracking algorithm is required to make sure that the argument changes continuously within
the selected semi-plane (jumps of argument by 2π are not acceptable)

any ray originated from the hinge point zk remains straight line ⇒ if the transform is applied
recursively to straighten out vertices of a polyline, defined by {z1, z2, ..., zN},

z∗ = GzxxN−2,z
xx
N−1,z

xx
N

{
... Gzivk−3,z

iv
k+2,z

iv
k+3

[
Gz′′′k−2,z

′′′
k+1,z

′′′
k+2

(
Gz′′k−1,z

′′
k ,z

′′
k+1

{
... Gz′2,z′3,z′4 [Gz1,z2,z3 (z)] ...

})]
...
}

︸ ︷︷ ︸
nested N−2 times

then, at each stage, the vertices, which already been straightened out, remain on straight..

do k = 2, N − 1
G () = Gzk−1,zk,zk+1() ← compute k-dependent, j-invariant part of Gzk−1,zk,zk+1()
do j = k − 1,1,−1 ← data dependency because of tracking
z′j = G (zj)

enddo
do j = k + 1, N,+1 ← data dependency because of tracking
z′j = G (zj)

enddo
zj = z′j ∀j = 1 : N

enddo

work from hinge point
outward in both directions

O
(
N2
)

operations required

Schwartz-Christoffel transform
Apply hinge transform sequentially to straighten out each bending. reversible!

Conformal grid by inverse mapping: interpret polyline as curve, build spline...

. Apply inverse transform to the
. rectangular grid on the right.

nonuniform

redistribute points

to make it uniform

.

do mtr=1,nmtrs
zj = spline (sj) ∀j = 1 : N ← spline interpolation
do k = 2, N − 1

G () = Gzk−1,zk,zk+1() ← compute k-dependent, j-invariant part of Gzk−1,zk,zk+1()
do j = k − 1,1,−1 ← data dependency because of tracking
z′j = G (zj)

enddo
do j = k + 1, N,+1 ← data dependency because of tracking
z′j = G (zj)

enddo
zj = z′j ∀j = 1 : N

enddo

sj = S
(
z′j
)
∀j = 1 : N ← adjust {sj} to make {z′j} equidistant

enddo

O
(
N2 · nmtrs

)
operations

Conformal mapping of curvilinear rectangular contour onto rectangle
algorithm of Ives & Zacharias needs iterations ⇒ basically irreversible

do mtr=1,nmtrs
zj = spline (sj) ∀j = 1 : N ← spline interpolation
do itr=1,nitrs ← iteration loop of Ives and Zacharias

do k = 1, N → compute k-dependent, j-invariant part of Gzk−1,zk,zk+1()
set up G () = Gzk−1,zk,zk+1() ← fold k − 1 and k + 1 into ∈ [1 : N] via periodicity
if (k == corner) then

special treatment
for corner points

endif
do j′ = 1, N − 1 ← data dependency because of tracking
j = k + j′

if (j > N) j = j −N ← fold j into ∈ [1 : N] via periodicity
z′j = G (zj)

enddo
zj = z′j ∀j = 1 : N

enddo
enddo
adjust L number of grid points in
ξ-direction to match aspect ratio
N = 2 · (L+M − 2)
sj = S (zj) , ∀ j = 1 : N ← recompute {sj} to make transformed {zj}

enddo equidistant on each side of the rectangle

.N = 2 · (L+M − 2) number of grid points on perimeter

two-level nested iterations ⇒ O
(
N2 · nitrs · nmtrs

)
operations

to mitigate computational cost set nitrs = nint
(√

2mtr+5
)

in practice nmtrs ∼ 10

for each zk, tracking consist of computing argu-
ment, initially defined ∈ [−π : π], but an arbitrary
integer number of 2πs may be added, to make
sure that it changes continuously when going from
zk−1 to zk, and only after that it is multiplied by
π/(π − αk) to straighten out ∠zk−1, zk, zk+1

do mtr=1,nmtrs
(xj, yj) = spline (sj) ∀ j = 1 : N ← spline interpolation
do itr=1,nitrs ← iteration loop of Ives and Zacharias

do k = 1, N → compute k-dependent, j-invariant part of Gzk−1,zk,zk+1()
set up G () = Gzk−1,zk,zk+1() ← fold k − 1 and k + 1 into ∈ [1 : N] via periodicity
if (k == corner) then

special treatment the usual OpenMP preambula
for corner points ntrds=omp get num threads()

endif trd=omp get thread num()
do j′ = jstr, jend,+1 ← data dependency because of tracking chnksize=(N − 1+ntrds-1)/ntrds
j = k + j′ ; if (j > N) j = j −N ← fold into ∈ [1 : N] jstr=1+trd*chnksize
(rj, γj) = G (xj, yj) ← transform and express in terms of jend=min((1+trd)*chnksize,N − 1)

enddo absolute value r and argument γ
!$OMP BARRIER

reconcile tracking among the threads
!$OMP BARRIER

do j′ = jend, jstr,−1
j = k + j′ ; if (j > N) j = j −N ← fold into ∈ [1 : N]
(xj, yj) = C

(
rj, corrected γj

)
← switch from (r, γ)

enddo back to (x, y)
!$OMP BARRIER

enddo
enddo
adjust L number of grid points in
ξ-direction to match aspect ratio
N = 2 · (L+M − 2)
sj = S (xj, yj) ∀ j = 1 : N ← recompute {sj} to make transformed {xj, yj}

!$OMP BARRIER equidistant on each side of the rectangle
enddo

The sole purpose of conformal mapping of curvilinear contour onto rectangle is to find such distribution
of grid points along each side of the curvilinear contour, that the forward mapping turns it into uniform
along the side of the rectangle in transformed space.

Placed an extra iterative loop around already iterative algorithm of Ives & Zacharias: starting with some
distribution of points (xk, yk) =

(
x(sk), y(sk)

)
along the contour [here s is coordinate along the contour; k is

grid-point index], find the corresponding s′k in the transformed space. On each side separately: because s′k
exists as a set of discrete values defining a smooth monotonic function, use interpolation to find a set σk
such that s′(σk) = k. Use these σk to set new approximation of sk and repeat the whole cycle again.

Iterate until convergence; roundoff-lever errors are achievable.

Optimize: set mutually dependent numbers of iterations in inner and outer loops to
mitigate computational cost. Both are progressively increasing during the process.

User inputs only one number of grid points along one of the directions: the other will be
determined by the code itself to make grid cells in the transformed space as square as possible.

Discretizing Laplace equation
We facing a very basic Dirichlet problem in a rectangular
domain and with constant coefficients of elliptic operator.

L. Collatz, The Numerical Treatment of Differential Equations (1960) original ”mehrstellenverfahren” idea:

Suppose we need to solve a Poisson equation, ∇2q =
∂q

∂ξ2
+

∂q

∂η2
= f . If one constructs a second-order-accurate

finite-difference operator L , such that its leading-order truncation term has form of Laplacian of Laplacian

L q = ∇2q+C · ∇2
[
∇2q

]
+ O

(
∆ξ4,∆ξ2∆η2,∆η4

)
, where C ∼ O

(
∆ξ2,∆ξ∆η,∆η2

)
is just a coefficient. Then, noting that the inner Laplacian may be replaced as ∇2

[
∇2q

]
→ ∇2f , introduce

a compensating term into r.h.s.,

L q = ∇2q+C · ∇2
[
∇2q

]
+ O

(
∆ξ4...

)
= f+C · ∇2f ≡ Rf

so the resultant solution of L q = Rf is fourth-order accurate approximation to the solution of ∇2q = f.

Rf is essentially a smoothing operator to compensate for truncation error of finite-difference Laplacian L .

1D version of this idea is known as Boris Numerov method, (1923,1924), e.g.,
http://gersoo.free.fr/Download/docs/numerov.pdf

Same applies for Laplace equation, which is just a special case with r.h.s. f = 0.

however, making it Laplacian of Laplacian is possible only if ∆ξ = ∆η

A. Samarskii, The Theory of Finite Difference Schemes (1971 then 1977, 1989, 2001 multiple editions)
1971, in Russian, page 263, http://samarskii.ru/books/book1971.pdf
2001 English translation 2001, page 293, Eq (8), http://samarskii.ru/books/book2001 2.pdf
proposed an alternative factorization, making the whole idea work for non-equal grid spacing, ∆ξ 6= ∆η, as well,

L q = ∇2q+C ·
(
∆ξ2 ·

∂2

∂ξ2
+∆η2 ·

∂2

∂η2

)[
∇2q

]
+ O

(
∆ξ4,∆ξ2∆η2,∆η4

)
, where C = O(1)

http://gersoo.free.fr/Download/docs/numerov.pdf
http://samarskii.ru/books/book1971.pdf
http://samarskii.ru/books/book2001_2.pdf

Indeed, consider a nine-point operator L×+ =

 γ β γ
α δ α
γ β γ

 where δ = −2α− 2β − 4γ

L×+q
∣∣
i,j

= α
(
qi+1,j − 2qi,j + qi−1,j

)
+ β

(
qi,j+1 − 2qi,j + qi,j−1

)
+ γ

(
qi+1,j+1 + qi+1,j−1 + qi−1,j+1 + qi−1,j−1 − 4qi,j

)
= α∆ξ2 ·

∂2q

∂ξ2
+ β∆η2 ·

∂2q

∂η2
+ 2γ

(
∆ξ2 ·

∂2q

∂ξ2
+∆η2 ·

∂2q

∂η2

)
+2α ·

∆ξ4

24
·
∂4q

∂ξ4
+ 2β ·

∆η4

24
·
∂4q

∂η4
+ 4γ ·

[
∆ξ4

24
·
∂4q

∂ξ4
+
∆ξ2∆η2

4
·

∂4q

∂ξ2∂η2
+
∆η4

24
·
∂4q

∂η4

]
+ ...

=
∂2q

∂ξ2
+
∂2q

∂η2
+ O

(
∆ξ2

)
+ O (∆ξ∆η) + O

(
∆η2

)
.

to make it second-order consistent, one needs to set α =
1

∆ξ2
− 2γ and β =

1

∆η2
− 2γ

while γ remains unconstrained thus far. This leads to

L×+q =
∂2q

∂ξ2
+
∂2q

∂η2
+
∆ξ2

12
·
∂4q

∂ξ4
+
∆η2

12
·
∂4q

∂η4
+ γ ·∆ξ2∆η2 ·

∂4q

∂ξ2∂η2
+ ...

where the terms with fourth-order derivatives can be factored into

1

12

(
∆ξ2 ·

∂2

∂ξ2
+∆η2 ·

∂2

∂η2

)(
∂2q

∂ξ2
+
∂2q

∂η2

)
︸ ︷︷ ︸

[∇2q]

=
∆ξ2

12
·
∂4q

∂ξ4
+
∆η2

12
·
∂4q

∂η4
+

(
∆ξ2

12
+
∆η2

12

)
︸ ︷︷ ︸

=γ·∆ξ2∆η2

·
∂4q

∂ξ2∂η2

if one chooses γ =
1

12
·
(

1

∆ξ2
+

1

∆η2

)
.

Replacing [∇2q]→ f , and moving it to r.h.s.,

L×+q
∣∣∣
i,j

=
1

6
·
(

5

∆ξ2
−

1

∆η2

)
·
(
qi+1,j + qi−1,j

)
+

1

6
·
(

5

∆η2
−

1

∆ξ2

)
·
(
qi,j+1 + qi,j−1

)
+

1

12
·
(

1

∆ξ2
+

1

∆η2

)
·
(
qi+1,j−1 + qi+1,j+1 + qi−1,j+1 + qi−1,j−1

)
−

5

3
·
(

1

∆ξ2
+

1

∆η2

)
· qi,j

= fi,j +
1

12
·
(
∆ξ2 ·

∂2

∂ξ2
+∆η2 ·

∂2

∂η2

)
f

∣∣∣∣
i,j

= Rf
∣∣∣
i,j

solution of which provides a fourth-order accurate approximation to the solution of ∇2q = f , even if ∆ξ 6= ∆η;

imposes maximum limit of grid-spacing inequality, 1/
√

5 < ∆ξ/∆η <
√

5

without loosing forth-order accuracy, operator R in r.h.s. can be replaced with its finite-difference analog, e.g.,

Rf
∣∣∣
i,j

=
2

3
· fi,j +

1

12
·
(
fi+1,j + fi−1,j + fi,j+1 + fi,j−1

)
L×+ reverts back to the classical Collatz (1960) “mehrstellenverfahren”, if ∆ξ = ∆η = ∆h

L×+ =
1

6
·

1

∆h2

 1 4 1
4 −20 4
1 4 1

 and, accordingly, L×+q = ∇2q +
∆h2

12
· ∇4q + O

(
∆h4

)

Samarskii claims six-order convergence for Laplace equation, f = 0, in the case of equal grid spacing ∆ξ = ∆η.

indeed, checking out Samarskii’s claim:

L×+q =
∂2q

∂ξ2
+
∂2q

∂η2
+
[
2nd-order terms

]
+ 2 ·

(
1

∆ξ2
− 2γ

)
·
∆ξ6

720
·
∂6q

∂ξ6
+ 2 ·

(
1

∆η2
− 2γ

)
·
∆η6

720
·
∂6q

∂η6

+γ ·
1

720

∑
±

∑
±

(
±∆ξ ·

∂

∂ξ
±∆η ·

∂

∂η

)6

q

= ∇2q+
[
...
]

+ 2(...)...+ 2(...)...

+4γ ·
1

720

(
∆ξ6 ·

∂6q

∂ξ6
+ 15∆ξ4∆η2 ·

∂6q

∂ξ4∂η2
+ 15∆ξ2∆η4 ·

∂6q

∂ξ2∂η4
+∆η6 ·

∂6q

∂η6

)
= ∇2q+

[
...
]

+
1

360

(
∆ξ4 ·

∂6q

∂ξ6
+ 30γ∆ξ4∆η2 ·

∂6q

∂ξ4∂η2
+ 30γ∆ξ2∆η4 ·

∂6q

∂ξ2∂η4
+∆η4 ·

∂6q

∂η6

)
︸ ︷︷ ︸

=

(
∆ξ4 ·

∂4

∂ξ4
+A∆ξ2∆η2 ·

∂4

∂ξ2∂η2
+∆η4 ·

∂4

∂η4

)(
∂2

∂ξ2
+
∂2

∂η2

)
q ?

Factorization is possible, if, simultaneously

∆ξ4 +A∆ξ2∆η2 = 30γ∆ξ4∆η2 and A∆ξ2∆η2 +∆η4 = 30γ∆ξ2∆η4

or

∆ξ2 +A∆η2 = 30γ∆ξ2∆η2 and A∆ξ2 +∆η2 = 30γ∆ξ2∆η2

where r.h.ss. are the same, so

∆ξ2 +A∆η2 = A∆ξ2 +∆η2

hence, in the case of ∆ξ 6= ∆η one must set A = 1, which leads to γ = (1/30) ·
[
1/∆ξ2 + 1/∆η2

]
, which

contradicts to the previously found γ = (1/12)·
[
1/∆ξ2 + 1/∆η2

]
needed to factorize 2nd-order terms.

however, if ∆ξ = ∆η = ∆h, then the two conditions merge into one, leading to A = 30γ∆h2 − 1, ∀γ, which
indicates that factorization is possible, and the scheme is 6th-order accurate for Laplace equation.

it does not work for terms with 8th-order derivatives:

L×+q =
∂2q

∂ξ2
+
∂2q

∂η2
+
[
2nd and 4th-order terms

]
+ 2 ·

(
1

∆ξ2
− 2γ

)
·
∆ξ8

8!
·
∂8q

∂ξ8
+ 2 ·

(
1

∆η2
− 2γ

)
·
∆η8

8!
·
∂8q

∂η8

+γ ·
1

8!

∑
±

∑
±

(
±∆ξ ·

∂

∂ξ
±∆η ·

∂

∂η

)8

q

= ∇2q+
[
...
]

+ 2(...)...+ 2(...)...

+4γ ·
1

8!

(
∆ξ8 ·

∂8q

∂ξ8
+ 28∆ξ6∆η2 ·

∂8q

∂ξ6∂η2
+ 70∆ξ4∆η4 ·

∂8q

∂ξ4∂η4
+ 28∆ξ2∆η6 ·

∂8q

∂ξ2∂η6
+∆η8 ·

∂8q

∂η8

)
= ∇2q+

[
...
]

+
2

8!

(
∆ξ6 ·

∂8q

∂ξ8
+ 56γ∆ξ6∆η2 ·

∂8q

∂ξ6∂η2
+ 140γ∆ξ4∆η4 ·

∂8q

∂ξ4∂η4
+ 56γ∆ξ2∆η6 ·

∂8q

∂ξ2∂η6
+∆η6 ·

∂8q

∂η8

)
︸ ︷︷ ︸

=

(
∆ξ6 ·

∂6

∂ξ6
+A∆ξ4∆η2 ·

∂6

∂ξ4∂η2
+B∆ξ2∆η4 ·

∂6

∂ξ2∂η4
+∆η6 ·

∂6

∂η6

)(
∂2

∂ξ2
+
∂2

∂η2

)
q ?

substitute ∆ξ = ∆η = ∆h and γ = 1/(6∆h2) ⇒ still cannot be factored,

∂8q

∂ξ8
+

28

3
·

∂8q

∂ξ6∂η2
+

70

3
·

∂8q

∂ξ4∂η4
+

28

3
·

∂8q

∂ξ2∂η6
+
∂8q

∂η8
6=
(
∂6

∂ξ6
+A ·

∂6

∂ξ4∂η2
+B ·

∂6

∂ξ2∂η4
+
∂6

∂η6

)(
∂2q

∂ξ2
+
∂2q

∂η2

)
three conditions must be satisfied, A+ 1 = 28/3, A+B = 70/3, and 1 +B = 28/3. No solution.

How do we know that they are orthogonal?

Need a discrete criterion to measure orthogonality errors.

These grids are generated by an analytical transform. They are meant to be exactly
orthogonal by the construction, but none of the angles here seem to be equal to 90◦. ?

midpoint orthogonality criterion: vectors connecting midpoints of
the opposite sides of grid cell (x, y)i,j, (x, y)i+1,j, (x, y)i+1,j+1, (x, y)i,j+1

`ξ =
(
∆ξx,∆ξy

)
and `η = (∆ηx,∆ηy)

where

∆ξx =
(
xi+1,j + xi+1,j+1

)
/2−

(
xi,j + xi,j+1

)
/2

∆ξy =
(
yi+1,j + yi+1,j+1

)
/2−

(
yi,j + yi,j+1

)
/2

∆ηx =
(
xi,j+1 + xi+1,j+1

)
/2−

(
xi,j + xi+1,j

)
/2

∆ηy =
(
yi,j+1 + yi+1,j+1

)
/2−

(
yi,j + yi+1,j

)
/2

are orthogonal to each other if

(`ξ · `η) = ∆ξx ·∆ηx+∆ξy ·∆ηy = 0

hence, the orthogonality error measure

ε = sin
(
∠`ξ`η −

π

2

)
=

(`ξ · `η)
|`ξ| · |`η|

=
∆ξx ·∆ηx+∆ξy ·∆ηy√(

∆ξx
2 +∆ξy

2
)
·
(
∆ηx2 +∆ηy2

)
this criterion is equivalent to having diagonals equal to each other

(`ξ · `η) =
[(
xi+1,j+1 − xi,j

)2
+
(
yi+1,j+1 − yi,j

)2
]

−
[(
xi,j+1 − xi+1,j

)2
+
(
yi,j+1 − yi+1,j

)2
]

= 0

orthogonality criterion using cross-directional interpolation biased
toward smaller side: same idea as above, but different definition of
vectors `ξ, `η. Let

∆ξxi+1/2,j = xi+1,j − xi,j
∆ξyi+1/2,j = yi+1,j − yi,j

∆ξi+1/2,j =
√(

∆ξxi+1/2,j

)2
+
(
∆ξyi+1/2,j

)2

∆ηxi,j+1/2 = xi,j+1 − xi,j
∆ηyi,j+1/2 = yi,j+1 − yi,j

∆ηi,j+1/2
=
√(

∆ηxi,j+1/2

)2
+
(
∆ηyi,j+1/2

)2

then

∆ξxi+1/2,j+1/2 =
∆ξi+1/2,j ·∆ξxi+1/2,j+1 +∆ξi+1/2,j+1 ·∆ξxi+1/2,j

∆ξi+1/2,j +∆ξi+1/2,j+1

∆ξxi+1/2,j+1/2 =
∆ξi+1/2,j ·∆ξyi+1/2,j+1 +∆ξi+1/2,j+1 ·∆ξyi+1/2,j

∆ξi+1/2,j +∆ξi+1/2,j+1

∆ηxi+1/2,j+1/2 =
∆ηi,j+1/2

·∆ηxi+1,j+1/2 +∆ηi+1,j+1/2
·∆ηxi,j+1/2

∆ηi,j+1/2
+∆ηi+1,j+1/2

∆ηyi+1/2,j+1/2 =
∆ηi,j+1/2

·∆ηyi+1,j+1/2 +∆ηi+1,j+1/2
·∆ηyi,j+1/2

∆ηi,j+1/2
+∆ηi+1,j+1/2

and vectors

`ξ =
(
∆ξxi+1/2,j+1/2,∆ξyi+1/2,j+1/2

)
and `η =

(
∆ηxi+1/2,j+1/2,∆ηyi+1/2,j+1/2

)
orthogonality error measure

ε = sin
(
∠`ξ`η −

π

2

)
=

(`ξ · `η)
|`ξ| · |`η|

point of intersection of vectors `ξ and `η is very close to the point
of intersection of diagonals, but does not coincide with it.

cubic spline orthogonality criterion: the idea is to compute all four
sets of derivatives, ∂x/∂ξ, ∂x/∂η, ∂y/∂ξ, ∂y/∂η, at every point (xi,j, yi,j)
of the grid, then define orthogonality error as

ε = sin
(
∠`ξ`η −

π

2

)
=

∂x

∂ξ
·
∂x

∂η
+
∂y

∂ξ
·
∂y

∂η√(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

·

√(
∂x

∂η

)2

+

(
∂y

∂η

)2

which is deviation of angles of intersection of curvilinear coordinate
lines from 90◦ angle.

to compute derivatives use cubic spline algorithm:

(i) construct spline going through all the grid points along the
. perimeter of the grid, assuming exact 90◦ angles at its corners
. (the same algorithm as the one to construct grid contour from
. user-specified reference points);

(ii) also compute second derivatives along the contour via spline;

(iii) construct splines for each coordinate line in both directions.
. Because xξξ + xηη = 0, (same for y), assume b.c.s prescribing
. second derivative at both ends:
. on western and eastern sides

∂2x/∂ξ2
∣∣
W,E

= −∂2x/∂η2
∣∣
contour

(same for y)

. on southern and northern sides

∂2x/∂η2
∣∣
W,E

= −∂2x/∂ξ2
∣∣
contour

(same for y)

Convergence rates for the three criteria of orthogonality
error in the case of analytically-generated orthogonal
curvilinear grid:

short dashes – midpoint criterion
solid line – biased toward smaller side
long dashes – cubic spline

orthogonality error is the maximum over all grid points.

triangles indicate second and sixth-order convergence rate

this is actually test for the methods of measuring
orthogonality error of a grid, rather than grid itself

Practical, not-a-toy, Black sea grid

1329× 1025 points

only 1 out of 8 grid lines is shown

mode=4 latlongrid=2 spline type=5 npass=10
proj=ME rlat=43.75 rlon=34.5 rota=0
west edge=26.5 east edge=43
south edge=40.75 north edge=47.25
lwidth=1. lonlat=0 rarefy=6

gshhs data=h

nx=664, ny=512
uscale=0.001

-97 -30.5 south-west
-45 -46
-11 -32.
+25 -43.8
+75 -47
+104 -33 < south-east
+89.2 -14.0
+55 +10
+38 +29
+57.5 +63.5 < north-east
+3 +47
-40 +60 < north-west
-74 12

1329× 1025 points, only 1 out of 8 grid lines is shown

Transformed view with land mask. Grid dimensions 1329× 1025 points. Grid spacing, meters.

Black sea, 1329× 1025 grid points, orthogonality error, radians

Black sea, 1329× 1025 grid points, orthogonality error, 5-point, 2nd-order Laplacian

Black sea, 1329× 1025, error in nonuniformity of grid spacing ratio

Black sea, 1329× 1025, error in nonuniformity of grid spacing ratio, 5-point, 2nd-order Laplacian

What is achieved?
a completely new compile once – use forever tool built from scratch;

based on Schwartz–Christoffel transform;

in its core, it is a novel two-level-nested iterative procedure to construct
reversible conformal mapping, (lat, lon)→(x, y)→ (ξ, η)→ (x, y)→(lat, lon)
for contour of arbitrary shape

⇒ ⇒ ⇒

the ”corner problem” is solved completely: guarantees exact 90-degree
angles at the side junctions, regardless of how user specifies reference
points for contour spline;

cubic or quintic splines to construct grid contour;

algorithm of Ives & Zacharias is rewritten from the first principles, from
scratch, completely free of complex-number arithmetics, and is parallelized;

nine-point “mehrstellenverfahren” discretization of Laplacian operator,
compact fourth-order accuracy, parallel solver;

very small orthogonality error, ∼ 10−5 radians in realistic applications;
converges to nothing as the number of grid points increases;

yields locally equal grid spacing in both directions, ∆xi,j = ∆yi,j , ∀i, j;

extremely robust

How robust?

Massachusetts Bay & Cape Cod Bay

https://github.com/sea-mat/seagrid

D
e

fa
c

to
th

is
is

s
e
a
g
r
i
d

lo
g

o
.

https://github.com/sea-mat/seagrid

A. Androsov, N. Voltzinger, I. Kuznetsov, V. Fofonova (2020)
Modeling of nonhydrostatic dynamics and hydrology of the
Lombok Strait https://www.mdpi.com/2073-4441/12/11/3092

https://www.mdpi.com/2073-4441/12/11/3092

An example: Atlantic ocean with focus on Gulf of Mexico:

an alternative to multistage 2-way nesting

Shown on next slide: grid dimensions 637× 241 points

For illustrative purposes divide it into 4 zones showing:
1 out of 8 coordinate lines, 1 out of 4, every other one, and all lines.

N-E Atlantic Ocean grid with focus on Gulf of Mexico, transformed view

.

.
horizontal grid spacing, meters

.
horizontal grid spacing, meters

Strait of Gibraltar

South Africa
focus on Benguela
and Agulhas currents

design goals:
place open boundaries
as far as possible from
the area of interest

preferably make them
perpendicular to the
directions of major currents
(best situation for inflo
and outflow b.c. algorithms)

south open boundary
is alinged with 55◦S parallel

572× 256 grid points

every other grid
line is shown

South Africa, Grid spacing in transformed coordinates, km

Summary: Strategy of usage
The observed loss of interest in using orthogonal curvilinear grids in ROMS community is mainly explained
by the absense of sufficiently good means to generate them. Hopefully this situation will be improved by
the present work.

orthogonal curvilinear grids are no substitute for unstructured grids

orthogonal curvilinear grids share all the advantages and disadvantages of structured-grid modeling codes,
i.e.:

• it is easier to do develop higher-order numerical schemes for structured model than for unstructured;

• for the same number of degrees of freedom, structured-grid models are much faster than unstructured;

• smoothness of curvilinear grid is essential to maintain accuracy of numerical algorithms of the model
→ do no attempt to ”over-fit” to follow details of coast line;

• curvilinear grids are not substitute for masking, although the use of land mask can be significantly reduced;

as conformal mapping is entirely controlled by the shape of the perimeter of the future grid, so do the
places where it puts fine and where coarse resolution. Therefore, by judicially bending the contour line (while
deliberately placing it within land masked area, and therefore, allowing some freedom to choose how it goes),
one can focus resolution in the places where it is desired most, or, conversely, make it as uniform as possible
within the area of interest.

behavior of splines – depending how one places spline reference points – sometimes is not very intuitive.
Therefore, it is advisable to capture first the general geometrical shape of the area of interest, using
as fewer reference points as possible, and only after that ”push” into capturing finer detail;

Finally, IZOGRID, as any other grid generator is just an instrument in hand. Depending on the geometry
of the area, always look for ad hoc approach to construct optimal grid.

