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Officially the problem is solved 30 years ago:

Ives, D. C. and R. M. Zacharias, Conformal mapping and orthogonal grid generation. Paper No. 87-2057,
AIAA/SAE/ASME/ASEE 23RD Joint Propulsion Conference, San Diego, CA, June 1987.
J. Propulsion and Power, 1989, Vol. 5, No. 3, pp. 327—333. D0I:10.2514/3.23156 (AIAA-87-2057).

POM suite at Old Dominion University http://www.ccpo.odu.edu/POMWEB/GRID-DATA/GRID. f

Wilkin, J. L., 1987: A computer program for generating two-dimensional orthogonal curvilinear coordinate
grids. Unpublished report, Woods Hole Oceanographic Institution, Woods Hole, MA 02543

Wilkin, J. and K. S. Hedstrom, User’s Manual for an orthogonal curvilinear grid generation package.
IMCS, Rutgers University, 1998, https://marine.rutgers.edu/po/tools/gridpak/grid manual.ps.gz

Gridpak maintained by K. S. Hedstrom. https://github.com/kshedstrom/gridpak
SeaGrid, by Rich Signell, 77 https://github.com/sea-mat/seagrid
Gridgen by Pavel Sakov, https://github.com/sakov/gridgen-c

Pygridgen (Python interface to gridgen) by Rich Signell, Robert Hetland, 77
https://github.com/pygridgen/pygridgen

GridBuilder, by Charles James (PIRSA-SARDI) https://austides.com/downloads

MIKE21C (formerly MIKE3D) Curvilinear Grid Generator
https://manuals.mikepoweredbydhi.help/2017/Water Resources/MIKE21C Scientific documentation.pdf

Unofficially, when newcomers to ROMS community ask about grid generation tool, we do not have much to offer.
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]L_ A new tool for setting up orthogonal

IZOG RID = curvilinear grids for oceanic modeling

The dilemma: Virtually all modern structured-grid ocean modeling codes are written in orthogonal
curvilinear coordinates in horizontal directions, yet the overwhelming majority of modeling studies are done
using very simple grid setups - mostly rectangular patches of Mercator grids rotated to proper orientation.
Furthermore, in communities like ROMS, we even observe decline in both interest and skill of setting
up curvilinear grids over the long term. This is caused primarily by the dissatisfaction with the existing tools

and procedures for grid generation due to inability to achieve acceptable level of orthogonality errors.
This means underutilization of the full potential of the modeling codes.

To address these issues, a new algorithm for constructing orthogonal curvilinear grids on a sphere for a fairly
general geometric shape of the modeling region is implemented as a compile-once—use forever software package.

Theoretically, one can use Schwartz-Christoffel conformal mapping to project a curvilinear contour onto
rectangle, then draw Cartesian grid in it, and, finally, apply the inverse transform (the one which maps the
rectangle back to the original contour) to the Cartesian grid in order to obtain the orthogonal curvilinear grid
which fits the contour.

However, in the general case, the forward transform is an iterative algorithm of Ives and Zacharias (1989),
and it is not easily invertible, nor it is feasible to apply it to a two-dimensional object (grid) as opposite to
just one-dimensional (contour) because of very large number of operations.

To circumvent this, the core of the new algorithm is essentially an iterative numerical solver for the
iInverse problem — to find such distribution of grid points along the sides of curvilinear contour, that the direct
conformal mapping of it onto rectangle turns this distribution into uniform one along each side of the rectangle.
Along the way, this procedure also finds the correct aspect ratio, which makes it possible to automatically
chose the number of grid points in one of the directions to yield locally the same grid spacing in both horizontal
directions. The iterative procedure itself turns out to be multilevel - i.e. an iterative loop built around another,
internal iterative loop. Thereafter, once the distribution of grid points along the perimeter becomes known,

the interior of the grid is filled in by solving a Dirichlet problem.

IZOGRID = isotropic-resolution, Ives and Zacharias, orthogonal curvilinear grid generator



Orthogonal Curvilinear Grid Generation

basic idea

(lat,lon) —(x,y) — (&,m) — (z,y)— (lat,lon)

(lat,lon) <+ (x,y) is conformal sphere-to-plane projection: Mercator, Lambert, stereographic, ...

Needs reversible conformal mapping (z,y) < (£,n) of plane-to-pane for fairly general geometric shape.



(z,y) < (§,n)

introduce z = x4+ iy and { = £ 4+ in, then 2z and ¢ must be related by an analytic (i.e. differentiable)

function of complex variable
z = z(¢) and, conversely ¢ = ((2)

differentiable means existence of the limit

dz - 2(C+ A¢) —2(¢) _ im r(&+ A, n+ An) +iy(§ + AL, n+ An) —x(€,n) —iy(€,n)
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the limit exists only if the two brackets () are the same,

hence or _ 9y and 8y__8a: %:@-l-i@:—i%—l—@
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How mapping by an analytic (i.e. differentiable) function
of complex-variable yields preservation of orthogonality?

Let £1,0> € {£,n}-plane be pair of infinitely small vectors,

£y = (61€,61m)
£> = (62, 62m)

(¢,n) — (z,y) transforms them into

such that £1_L£2, hence (fl . EQ) = 515 . 52€ -+ (5177 . 5277 =0

81 — N1 n, = ((5133, 51y) = (8,533 515 —|— 87733 517’], 8§y 51£ —|— 8,7y 5177)
ni,no € {x,y}-plane
£y — no ny = (02x,00y) = (e 62€ + Oy 62n, Oy 626 + Opy 62n)
their scalar product
(n1-n2) = (0ex 61€ + Oyz 011) - (Oew 626 + Oy 62n) + (Oey 61€ + Ony 817m) - (Dey 62€ + Byy J21m)

or
(n1-n2) = (0cw Ocx + Oy Bey) - 61€ - 626+ (Oew Onz + Oy Oyy) - 61€ - b1
+ (Onz Ocx + Ony Ocy) - 81m - 626 +  (Onx Oyz + Oyy Ony) - 617 - d21

using Cauchy—Riemann conditions, substitute 6,y — 0:x and 0y —+ -0z,
(n1 . ’I’I,Q) == (8§£B 8§£B —|— 877x (97733) . 515 . 52£
—|— (87718 85513 — (9533 877513) . 5177 . 525

(85513 (977£C — 87733 8513) : 515 : 5277
[Onz Oy + Oz O] - 611 - b2m
((Bex)? + (0y2)?) - (01€ - 626 4 61 - 62m) = O

_I_
_I_

Hence ¢,1¢, < niln, as long as C.-R.s hold.



Conformal mapping basics: preservation of aspect ratio
Let £1,¢> € {£,n}-plane be pair of infinitely small vectors,

€1 = (61&,01m)
£o = (62&,02m)

(&,m) — (x,y) transforms them into

} hence |€1] : || = \/(515)2 + (61m)°: \/(525)2 + (62n)°

b1 — nq ni = (61x,01y) = ((95:1: 61€ + Oyz 611, Oey 61€ + Ony 617

(Oc 62 + Oy 621, Dey 626 + By d2m)

no = (52%, 52y)

ni,ny € {z,y}-plane
22 — N>

what about [ni|:|n2| 7

> = (0w 616 + gz b1n)° + (Dey 516 + Byy 611)°
= ((9:0)® + (8v)%) - (1) + 2+ (9w - Oy + Oy - Buy) - 016 - 1 + ((B2) + (O)?) - (S1m)?

using Cauchy—Riemann conditions, substitute 0,y — 0:x and 0y — -0z,
|2 = ((agsc)Q + (877:1:)2)  (516)% + 2+ (Bex - Bym—0y - Dext) - 61.£ - 61m + ((87756)2 + (aga;f) . (611)>
= ((22)” + @2)%) - ( (526)* + (3u)?)
Similarly [no|* = ((aga;)2 + ((97711;)2) : ((525)2 — (52n)2) (0ex)* + (8ey)® = (8ez)” + (8ym)?
— (&79)2 + (anw)Q — (any)z + (353;)

1/pn = At -4/ (82)” + (9cw)°
1/pn = An-\/(8,2)° + (9yy)°

2
Hence |¢;1|:|¢2] = |n1|:|n2| as long as C.-R.s hold.

This applies to any orientation of vectors ¢4, ¢-, Compute
not necessarily along grid-coordinate lines.



Cauchy—Riemann conditions o;x = 0,y and 0Oy = —9d,z Vvield
2 2
e () m ) R ()rm() -
23 9g \ 9¢ an 9g \on/) ~ on \ 0O

0€?

similarly

If transform (z,vy) < (&,n) is known only for the boundary,

09 «» 09, (z,y) = (z(&n),y(&mn)), (z,y) €02, (&n)€dY

then inside the domain (z,y) = (z(&,n),y(&,n)) € 2\ 02 may be computed by solving a pair of
Dirichlet problems

Ofx + Op,x =0 subject to b.c. r=xz(&,n), (&,m) € 09
Ogey + 05y = 0 y=y&mn), (&n)e€dd

Therefore, for any domain ¥ € {«x,y}, which is to be conformally mapped onto domain ¢ € {¢,n}, there
IS one-to-one correspondence between mapping just the outer boundary, and mapping boundary-+tinterior.

When constructing transform (z,y) < (£,7n), it is sufficient to do it only for the boundary, 0% < 0¥
= huge computational savings, ¢(2(L + M)) vs. 0(L - M) operations

Assuming that in the {&,n}-plane the placement of points {¢; ;,7n:;} corresponds to uniform equally-spaced
Cartesian grid, the resultant placement of all grid points {z;;,y;;} of curvilinear grid, both its perimeter
and interior, is entirely and uniquely defined by the shape of its its curvilinear perimeter.



The outline for orthogonal curvilinear grid generation is therefore as follows:

Construct curvilinear perimeter — specify a set of coefficients for spline polynomials in such a way that
locations of the points on the contour line (z,y) = (a:(s),y(s)) may be computed for any value of s, which
is the coordinate along the curve, yet no set of discrete values {s;} corresponding to the actual grid
points, belonging to the edge of the grid, is specified. This means that at this stage points can be moved
freely along the curve. No conformal mapping is needed at this point.

Populate the curvilinear contour with grid points in such a way, that when applying discrete Schwartz —
Christoffel transform to conformally project the polygon, made of these points, onto a rectangle, the points
ended up equidistantly distributed on the sides of the rectangle. This implies moving the points along
the contour, via an iterative procedure involving algorithm of Ives and Zacharias (IZ) to conformally map
the discrete polygon onto the rectangle, calculate the mismatches between the resultant and the desired
locations of the points on the perimeter of the rectangle, adjust the initial positions of the points on the
curvilinear contour, repeat IZ-transform, recalculate mismatch, re-adjust, and so on...

On the way during these iterations, also adjust the number of grid points in one of the directions (usually
this is np-direction) to match the aspect ratio of the rectangle, L¢ o Ly = N¢ : N, as accurately as possible.
This yields A¢ =~ An, and, correspondingly, local distances between the adjacent grid points in both
directions of the resultant curvilinear grid will be almost equal to each other as well (isotropic resolution).

Once the above converges to vield the desired placement of grid points on the perimeter, fill the interior
of the grid by solving discrete Dirichlet problem.



Using splines to construct curvilinear contour from a set of user-specified reference points

To constrict cubic spline means that for a given set of values

{fk — f(ski)7 k= 17 7N}

defined at locations {si, k = 1,..., N}, not necessarily equidistant, Ask+1/2 = sp4+1 — S > 0, hence Ask+1/2 % const,
find set of derivatives

0
{dkz—f ,kzl,...,N}
68 S=—S}
such that, assuming that function f = f(s) is represented by a set of cubic polynomials defined individually
82
within each interval As;.,, its second derivative, ¢, = 8—‘£ is continuous at every junction point s = s;.
S S=S;,

To constrict quintic spline means to find a set of first and second derivatives, {dk, o, , k=1, ...,N},
such that, assuming that f = f(s) is made of pieces of fifth-order polynomials within each Aspy,,
its third and fourth derivatives are continuous at junction points s = sg.

Either way, constructing spline is nothing else, but a special way to find derivatives (first, or
both first and second) at the same locations where the values of function are specified.



Any cubic polynomial f = f(¢) defined within interval £ € [—1/2,1/2]
may be expressed as

F&) = fL-hEE) + - nf(e) +db - gh(€) + dF - ¢"i(¢)

where bt = hL(€), hf* = RE(E), g = ¢~ (¢), and ¢ = ¢f*(¢) are cubic
polynomials, which satisfy side b.c. according to the table

value 0/0¢
§ |12 412 12 4
ht(€) 1 0 0 0

hE(E) | 0 1 0 0
Ja @) | o 0 1 0
g™ | O 0 0 1

are uniquely defined by the table itself,

hR(E) = —+§(—— g) JR(E) = <§z_l> (§+§>
hi(E) = ——f(——2£> gh(8) = (s ——) (g——)

and are known as Hermite basis functions, hence

)/‘ fRa §_>+1/2 3]’3/( &R, £—>—|-1/2

f(€ =
%)
\‘fL7 §_>_1/2 g\( &Ia £_>_1/2




value d/0¢ 92 /0€?
hL, hR gL g '3 —1/> 41/ -1/ 41/> | —1/> 41/>
hE(€) 1 0 0 0] -6 +6
hE(€) 0] 1 0 0 +6 -6
g (¢) 0 0 1 0 -4 42
g®(&) 0] 0 0 1 -2 +4
matching condition for the first derivative at s = s;
1 1
- lim g:limgzdkzlimafz lim ﬂ
Asp_yy, 541208 s=s O sié=s OS A8y, =26 O s € [Sk, Sk+1]
- 5= (spt+ sk41) /2
SE[SA,,l,Sk.] SG[Sk;,SL-H] 6 —=
d dL VAR WRYA
SE[Sk-1,84] — d. = SE[Sk,Sk+1] . .
Asg Asppops L
matching second derivative s =& Aspqy, + >
1 2 2 2 1 2 o
. lim 8—5: |Im8—£= |ima_£: >—- lim 8_£ ASpqr/s = Sk+1 — Sk
Ask;_l/2 £—>+1ﬁ o0& s—s, 08 si—s O0s Ask:—|—1/2 ~1/2¢-¢ OE
S€[sk-1,5] SE€[sk,Ski1]

express f = f(&) via h%, h%, g%, g, take second derivative, and substitute side values of 92/0¢2 from table,

sE [Sk7175k], S—r Sy
N\

Sy—8, SE[sk,8k+1]

6fr1— 6fr + (2dk—1 + 4dy) - Asj_y, =6k + 6fpr1 — (4di + 2dp11) - Aspyy,

arriving to As%_% AS%+1/2
dj._ 2 2 d — fr_ —
k—1 _|_< n )‘dk+ L g Tk ka: 1_|_fk:—|—12 i
ASk._l/Q ASk_l/z A8k+1/2 A8k+1/2 ASk_1/2 A8k+1/2



two boundary conditions are required, however, for our purposes, for the reason explained later, we are
interested only in periodic b.c., via index replacement rules: k—1 >N ifk=1, and k+1—1ifk=N

k—|-1/2>

variational principle: cubic spline constructs function f = f(s) which yields minimum possible value of

r.n.s. depends on finite-difference derivatives of the function f, but not the function itself,

djo_1 +( 2 2 )'dk:+ i1 :3_< 1 Af

41 Af
ASk_l/2 ASk_1/2 A8k+1/2 A8k+1/2 ASk_l/Q AS

k:—l/z A5k+1/2 AS

where Af/As|k+1/2 = (fx+1 — fu)/Askyy, is finite-difference estimate of derivative.

Sk+ASk+1 5

an= () =] T (G0

Sk

among all piecewise-cubic, continuously differentiable functions going through specified values fi. = f(sz).

uniform As;y., = const = Ax yields

<t
B
1 1 [Af Af fi+1 — fi—1 2
~odi — —.| = —
6 j—1 + + ]-|—1 2 (Ax _y, + Ax ]+1/2> 2Ax
e \ o
compensate by averaging averaged A7 /A }
d; computed this way is known as Padé derivative (a.k.a. compact /’ff
differencing). It is 4th-order accurate, its truncation error 6 times smaller fffff
than conventional 4th-order-accurate finite-difference. I T
E
Fourier component f; = f - 4%
~ (2 1 ~ 1-Sin(kA ~ ~ sin(kA kA \
3 3 Az (2/3) + (1/3) cos(kAx) /4 /2 3n/4  kAx



Any fifth-order polynomial f = f(£), defined within interval £ € [—1/2,41/2] may be cast into form

of |- of a2f|F 1
— L'HL R'HR “J 'GL “J 'GR zJ 'DL = J 'DR _
£ = fHHYO + FRHUO + 5ol GHO+ 5 CUO+ 55| DHO+ 5| DUO ;
where the six functions HX(¢), HR(¢), GE(€), GT(¢), DH(€), and DE(¢), are polynomials of fifth power,
defined in such a way, that their values, first and second derivatives turn into O or 1 on the left and right
ends according to

R 82fL

value 0/0¢ 092 /0¢€?

€ |2 +2 12 412 12 +1)

HI(e) | 1 0 0 0 0 0

HE@E) | 0 1 0 0 0 0

GL) | 0 0 1 0 0 0

GE() | 0 0 0 1 0 0

DL) | 0 0 0 0 1 0

DE() | 0 0 0 0 0 1

hence
o R, €= 41/ of 1 OF/0E1", €= 412 o2f n 102, & 1)
\1 €\, ; o\,

J R Y of/0¢lt, € 1/ a2f/0¢?", € — —1/2

functions HY (&), HE(¢), GE(€), GE(E), DY (¢), and DE(¢), are Hermite basis functions (yet unknown).



Let p=£€&+41/2, hence pecl0,1] <« €€ [-1/2, +1/2], hence

P(p)=Ap°+ Bp*+Cp> = £ =0,
D
p=1
Z(p) = A+ B 4+ C
02/9p = BA + 4B + 3C
02F/0p? = 20A + 12B + 6C
H%(p) = 6p> —15p* +10p°
GRi(p) = -3p° +7p* —4p3
Dfi(p) = p°/2 —p* +p?/2
HA(E) = +¢ (?—5&%6&4)
L _1_ 1_5_ 2 4
HHE) = 5-¢ (5 - 56 + 6
Reey — (L 02 > 1 |
67 = (3-¢) [¢(se- 1) |
piey— (L e2Y e (32T 5__”
G(f)—(4 f)_§2<3§ 4) (2 s o.ozi,
5 _1 1_ 5 l 0.01-:;'
CEHE 6)2 (5+¢) g,
peey— (1 _ 2\ (1_
o) =3(7-¢) (3-¢)



value 0/0€ 92 /0€? 093/0¢3 0% /0%
¢ [ =2 42 Y2 412 12 12| —lo 41| -2 41
HL(€) 1 0 0 0 0 0 -60 -60 | 4+360 -360
HE(¢) 0 1 0 o) 0 0 +60 +60 -360 +360
GL (&) 0 0 1 o) 0 0 -36 -24 | 4192 -168
GH(¢) 0 0 0 1 0 0 -24 -36 | +168 -192
DY (&) 0 0 0 0 1 0 -9 -3 +36 -24
DE(€) 0 0 0 0] 0 1 +3 +9 -24 +36
matching condition for the first derivative at s = s,
1 = 1 L o
Iimﬁf: .8]‘? :dkza—f = -8f =Iim—f
s=o Os  Asp_y, 0§ S|s—ms,  ASpgr, O spi=s 08
SE[S;‘.,l,;:], S—>S;, 84—, S\Gr[s,b.,sl,}ﬂ]
matching the second derivative
92 1 orfIf  02F 1 8rft  92f
lim — = : =0, = — = = lim —
58, 082 As%_l/2 &2 0s2|,_, AS%+1/2 OE2 spi—s 052

-~
sE [Sk71781\']7 S—> Sk

Sk, S€[5k75k+1]



continuity of the third derivative at s = s;

_B3f 1 83" B3f 1 93flt . 93¢

lim = . = — - —— . = |lim —=

s—s; 083 Asz_l/2 0E€3 0s3 |, A82_|_1/2 &3 si<—s 083
SG[S:;,SA»] SE[SZSI«—&-I]

express f(&) via HE(€),...,DR(¢), take its third derivative, and substitute side-values for 93/0¢3 from the table

substitute ¢ = +1/2, k—1for L, kfor * s& [sp_1,s1], s— sk

7\

60f), — 6051 — 36 Asy_vy,di — 24Asy_ypd 1 + 9ASE, 51 — 3As2_, 61
Aslz’_l/2
60fk_|_1 — 60fk — 24A8k+1/2dk_|_1 — 36A8k+1/2dk + 3A8%+1/25g+1 — 9A8%+1/25g
- 3
. Ask+1/2 )
Sk < 8, S € [sg,spr1], substitute ¢ = —1/2, k for % k-1 for £
moving unknowns to the left, knowns to the right,
2 dp_q 3 1 1 2 dipy1
"5 A2, 5 \as2. 2. ) *T5 ag
Sk—l/z Sk—l/z Sk—l—l/z Sk+1/2
_1.5g_1+3. 1 i 1 ,5g_1,5Z+1
20 ASk_1/2 20 ASk_l/Q ASk_l_l/Q 20 A8k+1/2
_feri— S S S
Asg-l—l/z Asz—l/z



continuity of the fourth derivative at s = sy

R L A R o I Y L d b
\Asz'_l/Q ol ,_ Os4 s, _\Asg_i_l/z €4 )
SE[SZMSA-] SE[S?:Sk-&—l]

express f(&) via HE(€),...,DR(¢), take its fourth derivative, and substitute side-values for 9%/0¢* from the table

substitute ¢ = 4+1/2, k—1 for &, k for &, s & [su, sk_1, k], s — Si

7\

360 fi — 36051 — 192As),_i.dy, — 168As;_v,di—1 + 36As2_, 5 — 24As2_, 51,
Asé—l/z
_ —360fit1+ 360fk + 168Asp41dpt1 + 192As54.d) — 24As? 0y T 36As; 1.0k
_ 4
A8k+1/2

\ 7

S < S, S €& [3k73k+1]7 for £ = —1/2, k+ 1 for R, k for ©

moving unknowns to the left, knowns to the right

7 da 8 ( 1o, 1 >‘dk:+7 djot1

15 Asz_l/2 15 Asi_l/2 As:];’_i_l/2 15 A82+1/2
+1.5g1+1.< 11 >.5g_1.5g+1
15 As%_l/2 10 As%_l/2 As%_p/2 15 As%_p/2
Skt =Tk Sk — Tea
=TAd L. T A
Sk—l/z Sk_|_1/2



Combining continuity conditions the third and fourth derivatives
a - dk;—l -+ bk C dk + Ci - dk_|_1 = fk: V k= 1, ceey N (see below)

where
( 7 1 \ ( 7 1 \
15As3 15As2 | 15As3 |  15As2,, d;
a, = Sk;— /2 Sk;— /2 Cp = Skz—|- /2 k+1/2 dk; —
2 1 2 1 5"
o o o k
\ SAS%_l/Q 20A8k_1/2 ) \ 5AS%+1/2 20A8k+1/2 )
(8_( 11 ) L.( 1 >\ ([ fwr= i | fimfis )
3 3 2 2 4 4
b, — 15 Ask_l/2 Ask+1/2 10 Ask_1/2 Ask+1/2 f = Ask_l/2 Ask+1/2
_§< 1 1 > i( 1 + 1 ) Jetr —Je S — foa
K 5 AS%_l/Q A3§+1/2 20 ASk_1/2 A8k+1/2 ) \ Asg_i_l/z ASZ)_l/2 )

this is a well posed (diagonally dominant) block tri-diagonal system of linear equations

two boundary conditions are required at the ends, £k = 1, and k = N, however, for our purpose of building
contour of the grid, we are interested only in periodic closure conditions, which can be expressed via
index-folding rules:

for k=1 replace k-1 — N
for k=N vreplace k4+1 — 1

method of solution is similar to tri-diagonal solver for cubic spline, except that operations with numbers are
replaced with operation over vectors and 2 x 2 matrices (division by multiplication of matrix inverse)



assume uniform As; = const = Az, hence

7 16 4 Ax Ax f'_|_1 — f'_]_
e e T=C T +E5}'_1 —1—55§/+1 = : A :
2 2 1 3 1 Fit1 — 2f; + fimt
= 4. d. v/ Il AR — JJ J j
5Az ° TEagditt 2001 T1g% gl Az

Substitute f; = fi-e*4%7,  d;=dy-e®A% and  §7 =" - €477 into the above,

. 16 14 2 -~ , ~ 2i-sin(kAzx)
di. - | — + —cos(kA ———Ax - 0", -isin(kA = :
k (15+15 ( x)) el (kAz) Tk N
4 , ~ 3 1 ~ cos(kAx) —1
—— - di. -1sin(kA 0", - | — — — cos(kA =2f -
A disin(ean) 48 (10 2 cos w>) f kA

where d; and (@k are the unknowns. Solving it as a 2 x 2 linear system

I = 7 isin(kAx) 25 + 5 cos(kAx)
ek Ax 16 + 13 cos(kAzx) + cos?2(kAx)
~ .20 cos(kAz) + cos?(kAx) — 2
' = Ji-

Az2 16 + 13 cos(kAx) + cos?2(kAx)
Taylor expansion for kAx < 1 indicates the sixth and the fourth order of accuracy respectively,
~ . 30— 2(kAz)? + Z(kAz)* — I5(kAZ)® + ...

dy = k- fi- 1 21 1112
30 — 2(kAx)? + 22 (kAx)* — 1:(kAX)0 4 ...

15 11
30 — 2(kAz)? + 2 (kAz)* — ...
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Left: Fourier image multiplier 2 = # (kAx) (ideally should be J# = k) for the first derivative computed by cubic
(bold solid line) and quintic (bold with short dashes) splines. For comparison: five thin lines with short dashes
correspond to conventional finite-difference schemes of 2nd, 4th, 5th, 8th, and 10th orders of accuracy. Three
thin lines with long dashes above them are for compact-differencing schemes of Lele (1992): 6th- and 8th-order
of accuracy tri-diagonal schemes, 10th-order pentadiagonal (correspond to curves e,f,h in Fig 1 from Lele, 1992).

Right: same, but for image multiplier of the second derivative §” shown here as ¥ = \/f%/Q(kAa:) (ideally # = k).




Setting up perimeter of the future grid



Black sea. Rotated Mercator projection

Building map
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Defining contour: cubic (dashed line); quintic (solid) spline Cartesian system of user coordinates

b /v.\\
R, =




User input file to generate map and contour in the previous page

mode=1 latlongrid=2 spline type=4 npass=4

proj=ME rlat=43.75 rlon=34.5 rota=0
west_edge=26.5
south _edge=40.75

nx=100 ny=66
uscale=0.001

-26
-39.
-46
-31.
-44
-47
-33
-14
+10
+30
+63.
+47
+60
+12
-6.2

east_edge=43
north _edge=47.25

south-west

south-east

north-east

north-west

selector of the regime
map projection parameters

geographic extents of the map

dimensions of the future grid
scale factor for user coordinates
end of the header

Cartesian coordinates
(user system) of reference
points for contour spline
(tips of red arrows)
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...SO it looks straightforward, but actually it is not:

Spline in 1D: f = f(s)
given set points {sx, k= 1,..., N}
and set of values {fx = f(sx), k=1,...,N}

construct set {dk = df/ds‘szsk}

such that second derivative d?f/ds?
maintain continuity at every s = sg.

2D spline dilemma
given set of points {(zg,yx),k=1,...,N}

construct continuous curve (z,y) = (z(s),y(s))
such that it goes through all (z,yx), and

its derivatives dx/ds, d°z/ds?, dy/ds, d*y/ds?
satisfy matching conditions to yield

(i) smoothness (no kinks) and

(ii) continuity of curvature at all (g, yx).
derivatives d/ds with respect to what 777

coordinate s is not a-priori defined

..If it can be imagined, it can be done! [ockheed Martin

Nowadays this is called BOOTSTRAPPING !




Possible solutions:

Index’’ coordinate, s, = k, regardless of the actual distances between consecutive points

coordinate based on straight-line distances

s1 =0,

coordinate using circular ark distances

draw circular arc for each three consecutive points

Sk+1 = Sk + \/($k+1 —21)? + (Yetr1 — wr)°,

(x*’y*) (xk+1s'yk+1)
(xksylc)
(xk—lsyk—l)
compute its radius
i . 2 . (Ailjk_l/Q . Ayk—l—l/z — Ail?k_|_1/2 . Ayk—l/z)
Tk 2 2 2
(Ayk+1/2 - Ask_1/2 + Ayp_1y, - Ask+1/2)
2
\ + (A$k+1/2 . AS%—% —I— Aa:k_l/Q . AS%_H/Q)
where

Axpq1), = Tpy1 — Ty 2 2 2
2 Asi ., = Az, Ay,
AYpt1/, = Yk+1 — Yk k2 ke T iy

Radius (curvature 1/r;) is considered being positive
(negative), if turning to the left(right), when going in
the direction of index k increase; There is no singularity,
1/r, = 0, if the three points are on a straight line.

For each segment (x,y)r — (z,y)r+1 there are two
estimates of curvature, 1/r; and 1/rp4+1. Average them

1 1 |1 1
Thty, 2 |Tk  Tkt1

iIf the two are of the opposite signs, so be it:
the resultant curvature is less than either of them.

Y

Compute the distance along the arc segment

A8k+1/2)
27’k_|_1/2

A8k+1/2 = 27’k_|_1/2 - arcsin (

no singularity: when 1/ry4., — 0, simply As,4., = Asjqy,






"true” distance along the curve: requires iterative solver

k=1,.,N}

set initial approximation for {Asj.,
construct splines ¢ = z(s) and y = y(s)

recompute {As;4:,} by integrating distances
along the curve within each segment

. (a:k+1,yk+1) d 2 d 2
iterate < AS,(Jf\lN/)Q — / \/(d_x) -+ (d—y) ds
S S

LYk
S0 =0, o1 = s 4 AT,

substitute {Asgflv/vz)} — {Asg41,} and {s,g”ew)} — {sx}

(Trt1,Yn41) d > 1 2 M—1
computing integral / \/<d—x) + (d—y> ds~ ) \/(azj+1 —2;)° + (yj+1 — y;)° implies filling curve with
S S
j=1

(r,yr)
spline-interpolated points {(z;,y;) |j = 1,..., M}, where (zj=1,yj=1) = (@5, yx) and (zj=rr, yj=n1) = (Tpt1, Yit1)

to accelerate convergence, summation of straight-line distances may be replaced with circular arc distances;

_ dz\ ° dy 2
convergestoyield | — | +(— )] =1
ds ds



Proof of continuity of curvature:

build spline, fill it with points,

compute vector of curvature using consecutive
triplets of points

(a:*,y*) (xlc+1’ yk+1)

(xk:sylc)
(xk—1:yk—1)
for each point (x,yr) we know radius 7, and
direction to the center.

Define vector of curvature as

1
—const - — - Ny

7|
where n; is unit vector pointing to the center;
const is a arbitrary scaling factor;
negative sign is to make it point to the convex
side of the curve to avoid line interference.

define

Axpq1), = Tpt1 — Ty, > 2 2
2 AS 1 — ACB 1 A 1
AYpt1, = Yr+1 — Yk k+1/2 by T Aipy,

then
l _ 2 - (ACUk_l/Q : Ayk+1/2 - A$k+1/2 ) Aykz—l/z)
Tk 2 2 2
(Ayk:-l—l/z ’ Ask—1/2 + Ayk_l/2 . Ask+l/2)
2
\ + (A”fk+l/z CAsp_y, T Ay, Asiwz)

positive, if turning to the left, when going in the direction
of index k increase; negative otherwise; O if the three points
are on a straight line

unit vector from (x;,y,) to the center

Ay Asi_y, + Ay Asi,

n{ =
¢2(.)2+A<.)2 "
n® = 4 ATkfe ASpy, F ATpye - Ajpy,
V(24 ()3

there is no singularity when curvature 1/r, — 0



cubic, true curve distance

Nsg e N+1

quintic, true distance 7

Nsg,~ TN N+



cubic, index coord

N+1

quintic, index coord.

N+1



Conformal mapping: Why do we need it?

At this moment curvilinear grid contour is defined in sense that coefficients for all piecewise
polynomials of which contour is comprised are known.

But the contour is not populated with grid-points yet.

Suppose we know number of grid points in each direction, L and M, and we populate the contour
by distributing points uniformly along each side.

Then solve the Dirichlet problem

i+1, — 2T i—1,j i1 — 2T i .
Lit1,j Tij + Ti-1 _|_33,J—|—1 Tij + Tij—1 —0 Vi,je[2,...,L—1] x[2,.... M — 1]
AE? An?

similar for y; ;

...well, how do we know values of A¢ and An?
...0bviously only their ratio A¢/An matters.

...let’s pretend that A{/An =1 and try it any way

in fact, we use L and M that yield the correct ratio A¢{/An (to be explained later),
but still we would not get it right



tribution along each side = not orthogonal
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Conformal mapping: Discrete Schwartz—Christoffel transform explained



Elementary hinge transform in terms of absolute value and argument

Let z = 2, + |z — zx| - €7 be an arbitrary point on complex plane.

, (z — z)" P-1
Transform z' = z; + 51 where P = , conversely, a = 7 ,
(26 — 2K-1)" T« P
. w/(T—a)
hence 2 —z, = |z = 2 T e eXD{’i[B + (y—a-— 5)”
|2k — 2—1] &
,7/
T
Y=F+r+POy-B-m=F+_—— (y-a-f)
A turns Zzp_1 zr 241 into straight line, while z; and z;_; do not move,

Zpa1 — 2k = |zpa1 — 2x| - @D y=a+p — v =8

o1 — 2k = |zp — 21| - 27FA) y=m+p — v =n+p

Inverse transform: replace P — 1/P

for absolute value it is obvious.

. Y both el v = B+7T+Ji-(’v—5—7f)
argument: apply both consecutively,
J V' = BT (- B—m)

substitute ~' from the first into the second yields ~” = ~ for any P, 3

Substitution v/ =g yields ~+'=p4+n—-n/P=F+7—(r—a) =a+ 3,
i.e. direction g to z,’€+1 rotates back to its original direction to zj4;.

arguments are manipulated
separately from absolute values

= any ray, originating from
the hinge point z,, remains
straight line



[

oFiB—i(at8)m/(x—a)

e (= — zk)”/(w_o‘) to straighten out Zzj,_1 zj 2,1 and its inverse

transform 2’ = z, +

|Zk- — Zk:—1|



Straightening out a polyline: the transform function 2/ = ¥(z) is defined by a triplet of points
Zk—1, 2k, 2k+1, therefore 2/ =494, . ... (2)

2 =9, | ....(z) is analytical, except in its hinge point z = z

the hinge point z; is a branch point of a multi-valued function 2’ =%, ., ....(z), therefore the transform
cannot be applied to the entire plane, but only to a single-connected part of the plane on one side from
the angle Zz;_1, 2k, 2k+1

a tracking algorithm is required to make sure that the argument changes continuously within
the selected semi-plane (jumps of argument by 27 are not acceptable)

any ray originated from the hinge point z, remains straight line = if the transform is applied
recursively to straighten out vertices of a polyline, defined by {z1, z2, ..., 2n },

*
z == T Tz zT v v v v |: " " " ( 7 "o {_” T ] [ (z)] .”})] v
ZN-20ZN-1"%N g’zk—3’zk+2’zk+3 gzk—z’zk-i-l’zk—fa szk—lv'zk’zkﬂ g22,23,z4 gzl,z2,23

\ 7

nested N2 times
then, at each stage, the vertices, which already been straightened out, remain on straight.

do k=2,N—-1
90) =%, ,22.0 <« compute k-dependent, j-invariant part of 4., , ., 2..0)
doy=k—1,1,—-1 < data dependency because of tracking

z: =9 (25) work from hinge point
enddo outward in both directions
doj=k+1,N,+1 <+ data dependency because of tracking

2 =9 (z)) 0 (N?) operations required

J
enddo

zj=2z; Vj=1:!N
enddo



<
[ o < >
C o R o S 4 'r —& >
° P P ® ® ° $—
C < < O O & <
° ° o ° ° ° o o M
et
—"0—0—0—9 d ® ® 4 d ST
" -4 d ® S e Sl — o — T ’
-

Schwartz-Christoffel transform _
Apply hinge transform sequentially to straighten out each bending. reversible!



LLdL L L &

\ Ly
‘¥4

N

~

ne...

. build spl

IN€ as curve

interpret polyl

inverse mapping

Conformal grid by

nonuniform

to make it uniform

redistribute points

Apply inverse transform to the

rectangular grid on the right.



do mtr=1,nmtrs
z; = spline(s;) Vj=1:N < spline interpolation
do k=2,N-1
90) =%, ,n2.0 <+ compute k-dependent, j-invariant part of ¥4, . . ...
doj=k—1,1,—1 < data dependency because of tracking
z: =9 (25)
enddo 0 (N? - nmtrs) operations
do y=k+1,N,41 < data dependency because of tracking
z: =9 (z5)
enddo
zj=2z;, Vj=1:!N
enddo
sj=5(2}) Vj=1:N < adjust {s;} to make {2/} equidistant
enddo



Conformal mapping of curvilinear rectangular contour onto rectangle
algorithm of Ives & Zacharias needs iterations = basically irreversible

3/2

3/4 o —m—=m=s=wrzmomroom-moo-=-1/2




do mtr=1,nmtrs

z; = spline(s;) Vj=1:N « spline interpolation
do itr=1,nitrs < iteration loop of Ives and Zacharias
do k=1,N — compute k-dependent, j-invariant part of ¢, . ...
setup 90) =9, ,2.5.0 + fold k—1 and k4 1 into € [1 : N] via periodicity
if (k == corner) then

special treatment
for corner points

endif

doj =1,N-1 < data dependency because of tracking
j=k+J
if (j >N) j=j— N <+ fold 5 into € [1: N] via periodicity
z: =9 (25)

enddo

zj=2z, Vj=1:!N

enddo
enddo

adjust L number of grid points in

(-direction to match aspect ratio
N=2-(L+M-2)

si=2S5(z;), Vj=1:N < recompute {s;} to make transformed {z;}

enddo equidistant on each side of the rectangle
N =2.(L+ M —2) number of grid points on perimeter for each zg, tracking consist of computing argu-
ment, initially defined € [« : «], but an arbitrary
two-level nested iterations = & (N?-nitrs - nmtrs) operations integer number of 27s may be added, to make

. ) sure that it changes continuously when going from
: — \/~mtr+5
to mitigate computational cost set nitrs = nlnt( 2 ) 2.1 to 2z, and only after that it is multiplied by

in practice nmtrs ~ 10 w/(m — a) to straighten out Zzx_1, zk, zk+1



do mtr=1,nmtrs
(xj,y;) = spline(s;) Vj=1: N < spline interpolation

do itr=1,nitrs < iteration loop of Ives and Zacharias
do k=1,N — compute k-dependent, j-invariant part of 4, ., ....()

set up 9() =%, ,.2.2..0) «— fold k—1 and k+ 1 into € [1 : N] via periodicity

if (kK == corner) then
special treatment the usual OpenMP preambula
for corner points ntrds=omp get num threads()

endif trd=omp get thread num()

do j' = jstr, jend, +1 < data dependency because of tracking chnksize=(N — l+ntrds-1)/ntrds
j=k4+4 ; if (j>N) j=j— N <+ foldinto € [1: N] jstr=1+trd*chnksize
(r5,v5) =9 (x4,y;5) < transform and express in terms of jend=min((1+trd)*chnksize, N — 1)

enddo absolute value » and argument ~

'$OMP BARRIER

reconcile tracking among the threads
'$0MP BARRIER

do j' = jend, jstr,—1
j=k+y4 ; if (j>N) j=j5j— N <« fold into € [1: N]

(zj,y;) = € (rj, corrected ;) + switch from (r,~)

enddo back to (z,vy)
! $OMP BARRIER
enddo

enddo
adjust L number of grid points in
£-direction to match aspect ratio
N=2-(L+M-2)
si=S(zj,y;) Vi=1: N < recompute {s;} to make transformed {z;,y;}
'$OMP BARRIER equidistant on each side of the rectangle
enddo



The sole purpose of conformal mapping of curvilinear contour onto rectangle is to find such distribution
of grid points along each side of the curvilinear contour, that the forward mapping turns it into uniform
along the side of the rectangle in transformed space.

Placed an extra iterative loop around already iterative algorithm of Ives & Zacharias: starting with some
distribution of points (z,yr) = (az(sk),y(sk)) along the contour [here s is coordinate along the contour; k is
grid-point index], find the corresponding s;C in the transformed space. On each side separately: because 32:
exists as a set of discrete values defining a smooth monotonic function, use interpolation to find a set o}
such that s'(or) = k. Use these o, to set new approximation of s, and repeat the whole cycle again.

Iterate until convergence; roundoff-lever errors are achievable.

Optimize: set mutually dependent numbers of iterations in inner and outer loops to
mitigate computational cost. Both are progressively increasing during the process.

User inputs only one number of grid points along one of the directions: the other will be
determined by the code itself to make grid cells in the transformed space as square as possible.
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Discretizing Laplace equation

L. Collatz, The Numerical Treatment of Differential Equations (1960) original " mehrstellenverfahren” idea:

0 0
Suppose we need to solve a Poisson equation, VZ2¢= 8;2 + 5 q2 = f. If one constructs a second-order-accurate
n
finite-difference operator ., such that its leading-order truncation term has form of Laplacian of Laplacian
Lq=V?q+C -V [V?q| + O (A", AL An?, An?) where O ~ 0 (A€, AtAn, An?)

is just a coefficient. Then, noting that the inner Laplacian may be replaced as V?2 [VQq] — V2f, introduce
a compensating term into r.h.s.,

Lq=V?q+C -V?[V?q| + 0 (A*..) = f+C - V°f = Zf
so the resultant solution of ¥q = Zf is fourth-order accurate approximation to the solution of V?q = f.

Zf is essentially a smoothing operator to compensate for truncation error of finite-difference Laplacian £ .

1D version of this idea is known as Boris Numerov method, (1923,1924), e.qg.,
http://gersoo.free.fr/Download/docs/numerov.pdf

Same applies for Laplace equation, which is just a special case with r.h.s. f =0.
however, making it Laplacian of Laplacian is possible only if A = An

A. Samarskii, The Theory of Finite Difference Schemes (1971 then 1977, 1989, 2001 multiple editions)

1971, in Russian, page 263, http://samarskii.ru/books/book1971.pdf

2001 English translation 2001, page 293, Eq (8), http://samarskii.ru/books/book2001 _2.pdf

proposed an alternative factorization, making the whole idea work for non-equal grid spacing, A¢ = An, as well,
0? 0?

Lq=V3q+C - <A§2 = 4+ An?. 3—772> (VZq| + 0 (Ag*, A2 An?, An?) | where C=0(1)


http://gersoo.free.fr/Download/docs/numerov.pdf
http://samarskii.ru/books/book1971.pdf
http://samarskii.ru/books/book2001_2.pdf

Indeed, consider a nine-point operator L@k = where § = —2a — 28 — 4~

202
=™ S ™
202

X%CJ\Z-J = o (g1, — 2¢i + qi-1) + B (¢ij+1 — 2¢i; + @ij—1) + 7 (@i+1,j41 + Git+1,j-1 + Gi-1,j+1 + @i—1,j-1 — 445 ;)

0%q 82 82q 0%q
An? An2 . =

AL 9% An* 9% [AS“ Otq = ALAn? 9%y +An4 84(1] n

2 - . 24 . . 4 . . .
T e T o e T 24 ¢t 4 022 ' 24 o

02 02
_ % O
0E2 ~ On?

= aAg2. 22 — 42y (AgQ

0 (AE2) + 0 (AgAn) + 6 (An?) .

1 1
to make it second-order consistent, one needs to set o= —2v and fB=——=—2v
Ag2 An?
while v remains unconstrained thus far. This leads to
0%q AE? 0%q = An? 0% 0%q
P = —* : : CAE2 AR .
*1 T He2 + 2 2+ 12 “ogt T 12 o T ASAT g,
where the terms with fourth-order derivatives can be factored into
1 02 92 02 02 AE? 9% An? 0% A2 An? o*
L (a2 C 4 A2 g, 97\ _ A& 0q, An” 07, (AL AT\ Jg
12 852 877 A 02~ On? ’ 12 9¢4 12 on? \ 12 12 ) DE20n?
[V2g] = A& An?

+ ...

1
if one chooses v = : —
7T 12 (A£2 + An? )



Replacing [V?g] — f, and moving it to r.h.s.,

1 5 1 1 5 1
R — . _ A i 4 Gi1s) + = - _ Aqs .
%1, =g (AgQ Anz) (gi+1,; + qi-1,5) + c (An2 A§2> (gij+1 + @ij—1)
1 1 1
+E : Ae2 + Ar? ' (Qi+1,j—1 + git141 + Gi-1,41 + Qi—l,j—l)

5 1 1
-5 (ae*ap)

2
2 0 :%‘f

—f-'—l—i- A2 —+ A Q.i f
= fij+ 75 g2 T AT 5 g

2¥)

0]

solution of which provides a fourth-order accurate approximation to the solution of V2¢ = f, even if A¢ # An;
imposes maximum limit of grid-spacing inequality, 1/v5 < A¢/An < /5

without loosing forth-order accuracy, operator & in r.h.s. can be replaced with its finite-difference analog, e.g.,

2 1
Rf| = 3 fij + 5 (fig1, + fi1j + fije1 + fij—1)

Y]

Z* reverts back to the classical Collatz (1960) “mehrstellenverfahren”, if A§ = An = Ah

Ah?
and, accordingly, Lyq = Vg + 5 V4 + 0 (AR*)

1
Ah?

1 4
4 —20
1 4

g N =

1

Samarskii claims six-order convergence for Laplace equation, f = 0, in the case of equal grid spacing A& = An.



indeed, checking out Samarskii’s claim:

0%q . 0°%q 1 A§6 0%¢q 1 6 9%
Lyqg = 2nd-order terms 2 —= -2 - .
*4 ag2+an2+[ I+ (Ag? 7) 720 856 (A ) 720 O
7Y (= 8_i AN
i 720 — An on 1

= V2q+[..] +2C.) .. +2(.)...

1 6 09%¢q 442 0%¢q 5 0%¢q 6 0%¢q
— — + 15A¢"A 15A&2% An? An° - —
+4 - 720( § - a§6+ §"An e o2 + §°An 528774-1— n

6 O° O° H°

360 \ 856 ag4an2 OE20m* an

a4 a4 o% 52 92 '?

= [ Ac* . —— + AAE2AR? An® . .
<£ ger T AN Geg T AT an4> <3£2+8772>q

Factorization is possible, if, simultaneously
ALY+ AAE2AR? = 307 AE* A% and  AAE2An? + An* = 307 A2 An?
or
AE?2 4+ AAN? = 307 AE2AR?  and  AAE? 4 An? = 307AE%An?
where r.h.ss. are the same, so
AE? + AAn® = AAE® + An?
hence, in the case of A¢ # An one must set A = 1, which leads to v = (1/30) - [1/A&? + 1/An?|, which
contradicts to the previously found v = (1/12)-|1/A&? + 1/An?| needed to factorize 2nd-order terms.

however, if A& = An = Ah, then the two conditions merge into one, leading to A = 30vAh? — 1, Y+, which
indicates that factorization is possible, and the scheme is 6th-order accurate for Laplace equation.



it does not work for terms with 8th-order derivatives:

0%q  0%q 1 A§8 98¢ 1 An8 08q
Lrg=—+ — 2nd and 4th-order terms 2. 2 — — .
1= a5 I+ (A52 ”) 81 ogs T (A ) 8l onp
+

0€2
1 o o \8
LR Z( ¢ ”'an) 4

= V3q+[..] + 20D +2(.)...

1 98¢ 8¢ 9%q 0% 0°q
4r . — [ AL® . L 4+ 28 A0 AR T0AL* An* 28 A2 An® A 8.—)
T4 - ( .21 £ An 952 + £ An ' DEhant + £2An ' 9E20mb + An e

8! 08
8 88 88(] A 6 88(])

2 8%q 9%q
= V2t [ + = (A 2 4 567 A0 A —|—140A4A + 567A° An°

substitute A¢ = An = Ah and v = 1/(6Ah?) = still cannot be factored,

o8 28 08 70 o8 28 08 o° 9° 9° 9° 9° 0? 0?
sy s S Sy S (T A+ Bt 14+ 213
0E8 3 0&%0m 3 0&%0n* 3 0€%20n°  Ons 0O OE*0m 0&20n*  on® /) \ o€ on

three conditions must be satisfied, A+1=28/3, A4+ B =70/3, and 1 + B = 28/3. No solution.




How do we know that they are orthogonal?

Need a discrete criterion to measure orthogonality errors.

These grids are generated by an analytical transform. They are meant to be exactly ?
orthogonal by the construction, but none of the angles here seem to be equal to 90°. @




midpoint orthogonality criterion: vectors connecting midpoints of
the opposite sides of grid cell (z,y):;, (x,v)i+145, (@, ¥)i+14+1, (T, Y)ij+1
Eg = (Agx, Agy) and E’? = (Ana:, Aﬂy)
where
= (Tit1,; + Tit1,j+1 Tij + Tij+1) /

) /2= (

(yz+1,j + yi—l-l,j-l-l) /2 — (y ij T+ yz‘,j+1)
) /2=
) /2= (vi

(zij+1 + Tit1,j41 Tij + Tiy1;) /2

Any = ( Yij+1 T+ Yit1,+1 Yij + yi+1,j> /2

are orthogonal to each other if
(be - £)) = Acz - Apze + Agy - Ayy =0
hence, the orthogonality error measure
£ Acx - A Agy - A
e =sin (Zect, — 2 ) = (Ef Z) % - Ant + Acy - Any
| §| | 77| \/(A;SCBQ + A§y2) ) (AUQZQ + AnyQ)

2
this criterion is equivalent to having diagonals equal to each other

(be - £) = [($i+1,j+1 — xz‘,j)2 + (yz‘+1,j+1 - ym’)ﬂ

B [(wivj-l-l - w¢+1,j)2 + (yz',j—i-l — yi—l—l,j)2} =0



orthogonality criterion using cross-directional interpolation biased
toward smaller side: same idea as above, but different definition of
vectors £, £,. Let

AeTiy),j = Tit1,j — Tiyj \/ 5 S
2, ) ) A . Jp— A T: 11 i A ARV
AeYiti; = Yit1,j — Yij Sit1/2,] ( Xt/ ,J) + ( eYit1/ ,J)

AniBi Y. = Tij+1 — Tij \/ 2 2
e ’ ’ Ap. oy, = Apx; iy, Apy; a1y,
AnYij+1/2 = Yij+1 — Yij URERE (Anzijp)” + (Dyijiper)

then

Moo iy ATttt T Ay - Aeitag
§Lit1/2,5+1/2 A€i+1/2,j + A§i+1/2,j+1

Ae, _ _ A5i+1/2,j ’ Aﬁyi+1/z,j+1 + A§¢+1/z,j+1 ’ Aéyz'+1/2,j
ELi41/2,5+/2 A€i+1/2,j —I_ A§i+1/2,j—f—1

A . . . Am‘,j+1/2 ) Anxi+1,j+1/2 + Ani+1’j+1/2 . Anaﬁi,j+1/2
n 7/+ /27.7+ /2 Anl,j+1/2 + AnZ—i-l,.]—I-l/z

A _ A’?i,j—l-l/z ) Anyi—l—l,j+1/2 + Am;+1,j+1/2 ' Anyz’,j—i—l/z
nYitifo ity =

Ani,j-l—l/z + Am'—|—1,j+1/2
and vectors

££ = (Agxi+1/2,j+1/2, Agyi_|_1/2,j_|_1/2) and £77 = (An:ci+1/2’j+1/2, A??yi+1/z,j-|—1/2)
orthogonality error measure

=sin| /b, — — )| = —~ "2
) (<tetr=3) 2| - 14|



point of intersection of vectors £, and ¢, is very close to the point
of intersection of diagonals, but does not coincide with it.



cubic spline orthogonality criterion: the idea is to compute all four
sets of derivatives, 0x/0¢, 0x/0n, 0y/0&, dy/0n, at every point (xij, i)
of the grid, then define orthogonality error as

Oor Ox n Oy Oy
0§ on 0§ On

LA o e

which is deviation of angles of intersection of curvilinear coordinate
lines from 90° angle.

T

e = sin (46,53,7 —

to compute derivatives use cubic spline algorithm:

(/) construct spline going through all the grid points along the
perimeter of the grid, assuming exact 90° angles at its corners
(the same algorithm as the one to construct grid contour from
user-specified reference points);

(i) also compute second derivatives along the contour via spline;

(iii) construct splines for each coordinate line in both directions.
Because z¢e + x = 0O, (same for y), assume b.c.s prescribing
second derivative at both ends:
on western and eastern sides

8%z /0¢|,, , = —0°x/On?|
on southern and northern sides

%z /Om — 0%z /0€7|

(same for y)

contour

2|W,E = (same for y)

contour
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ort. error

Convergence rates for the three criteria of orthogonality
error in the case of analytically-generated orthogonal
curvilinear grid:

short dashes — midpoint criterion
solid line — biased toward smaller side
long dashes — cubic spline

orthogonality error is the maximum over all grid points.

triangles indicate second and sixth-order convergence rate



mode=4 latlongrid=2 spline type=5 npass=10
proj=ME rlat=43.75 rlon=34.5 rota=0
west_edge=26.5 east_edge=43
south_edge=40.75 north_edge=47.25
lwidth=1. 1lonlat=0 rarefy=6

gshhs data=h

nx=664, ny=512

uscale=0.001
Practical, not-a-toy, Black sea grid -

-97 -30.5 south-west

1329 x 1025 points -45 -46
-11 -32.
only 1 out of 8 grid lines is shown +25 -43.8
+75 47
+104 -33 < south-east
+89.2 -14.0
+655 +10
+38 +29
+57.5 +63.5 < north-east
+3 +47

-40 +60 < north-west
-74 12



1329 x 1025 points, only 1 out of 8 grid lines is shown



Transfokmed view with land mask. Grid dimensions 1329 x 1025 points. Grid spacing, meters.



Black sea, 1329 x 1025 grid points, orthogonality error, radians
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Black sea, 1329 x 1025, error in nonuniformity of grid spacing ratio, 5-point, 2nd-order Laplacian



What is achieved?
a completely new compile once — use forever tool built from scratch;

based on Schwartz—Christoffel transform;

in its core, it is a novel two-level-nested iterative procedure to construct
reversible conformal mapping, (lat,lon)—(x,y) — (£&,17) — (x,y)— (lat,lon)
for contour of arbitrary shape

the ""corner problem” is solved completely: guarantees exact 90-degree
angles at the side junctions, regardless of how user specifies reference
points for contour spline;

cubic or quintic splines to construct grid contour;

algorithm of Ives & Zacharias is rewritten from the first principles, from
scratch, completely free of complex-number arithmetics, and is parallelized;

nine-point “mehrstellenverfahren” discretization of Laplacian operator,
compact fourth-order accuracy, parallel solver;

very small orthogonality error, ~ 107> radians in realistic applications;
converges to nothing as the number of grid points increases;

yields locally equal grid spacing in both directions, Axz;; = Ay;;, V4,7,

extremely robust
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How robust?
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https://www.mdpi.com/2073-4441/12/11/3092

An example: Atlantic ocean with focus on Gulf of Mexico:
an alternative to multistage 2-way nesting
Shown on next slide: grid dimensions 637 x 241 points

For illustrative purposes divide it into 4 zones showing:
1 out of 8 coordinate lines, 1 out of 4, every other one, and all lines.
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N-E Atlantic Ocean grid with focus on Gulf of Mexico, transformed view
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South Africa

focus on Benguela
and Agulhas currents

design goals: =7
place open boundaries
as far as possible from
the area of interest )

preferably make them
perpendicular to the R
directions of major currents
(best situation for inflo

and outflow b.c. algorithms) -

south open boundary

is alinged with 55°S parallel
572 x 256 grid points \

every other grid \
line is shown \




10 15 20 29 30 35 40

South Africa, Grid spacing in transformed coordinates, km







Summary: Strategy of usage

The observed loss of interest in using orthogonal curvilinear grids in ROMS community is mainly explained
by the absense of sufficiently good means to generate them. Hopefully this situation will be improved by
the present work.

orthogonal curvilinear grids are no substitute for unstructured grids

orthogonal curvilinear grids share all the advantages and disadvantages of structured-grid modeling codes,
i.e.:

e |t is easier to do develop higher-order numerical schemes for structured model than for unstructured;
e for the same number of degrees of freedom, structured-grid models are much faster than unstructured;

e smoothness of curvilinear grid is essential to maintain accuracy of numerical algorithms of the model
— do no attempt to "over-fit" to follow details of coast line;

e curvilinear grids are not substitute for masking, although the use of land mask can be significantly reduced;

as conformal mapping is entirely controlled by the shape of the perimeter of the future grid, so do the
places where it puts fine and where coarse resolution. Therefore, by judicially bending the contour line (while
deliberately placing it within land masked area, and therefore, allowing some freedom to choose how it goes),
one can focus resolution in the places where it is desired most, or, conversely, make it as uniform as possible
within the area of interest.

behavior of splines — depending how one places spline reference points — sometimes is not very intuitive.
Therefore, it is advisable to capture first the general geometrical shape of the area of interest, using
as fewer reference points as possible, and only after that " push” into capturing finer detail;

Finally, IZOGRID, as any other grid generator is just an instrument in hand. Depending on the geometry
of the area, always look for ad hoc approach to construct optimal grid.



