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Numerical simulation of circulation and internal waves in a basin requires the knowl-
edge of bottom topography, defined as a continuous and continuously differentiable
field (unless there are known features of the relief to justify the opposite), which is,
unfortunately, not always available with sufficient resolution and coverage. In this
article we review existing techniques for producing regularly gridded field from scat-
tered bathymetry data – in our case raw field data measured by a boat equipped with
an echo sounder and GPS – and propose a new one, which we believe is the most
optimal for this situation. The technique essentially goes along the line of approach of
Sandwell (1987) using Green functions to construct biharmonic spline interpolation,
which we augment by adding coastline and introduce special preprocessing of mea-
sured data to identify and eliminate (by averaging out) potentially contradictory and
unreliable measurements which may cause spurious oscillations of biharmonic spline.

Keywords: reconstruction of gridded field from scattered data, biharmonic spline
interpolation, data quality control, Regional Oceanic Modeling System

Introduction

The subject of this study is lake Shira, located at 54◦30′38′′N, 90◦12′09′′E in Re-
public of Khakassia, Russia. The lake is approximately 9.5km long and 5km wide, it is
salty, and, despite the fact that it is relatively shallow, ∼ 25m deep, it is stratified in both
temperature and salinity. During the last several years a significant, multidisciplinary re-
search program was undertaken, including observations and measurements of physical
and biological/ecosystem processes. Historically the lake was classified as meromictic,
however in fall 2014 there were observations of complete mixing of water mass through-
out the entire water column, which was not observed in all several decades. So one the
primary concerns is the rate of exchange of its hypolimnion water with the upper layers,
and ultimately, surface. Velocity measurements using ADCP show the presence of de-
tectable internal waves (Kompaniets et al., 2017), which is expected to provide a more
efficient vertical mixing mechanism than diffusion (Lemckert and Imberger, 1998; Wüest
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and Lorke, 2003). A more recent analysis in situ data established pattern of circulation
(Volodko et al., 2017). In summer 2018 GPS-tracked drifters were used to further study
circulation. In its turn, these developments stimulate the need for numerical modeling
of lake Shira, echoing some past experience of monitoring and modeling ecological im-
pact on lake Baikal decades earlier (Penenko , 1989), and more advanced in sea of Azov
(Shabas , 2014).

One of the first task on the path to hydrodynamic numerical simulation is to set up
suitable bathymetry, which implies having is as a continuous 2D field, realistically ac-
curate, but should respecting the necessary precautions associated with terrain-following
coordinates (Beckmann and Haidvogel, 1993; Shchepetkin and McWilliams, 2003). The
bathymetry of lake Shira was measured in summer 2010 from a boat equipped with GPS
and an echo sounder, traversing the lake by making 9 nearly parallel passes in NE-SW
direction, approximately 1km apart from each other, as well as some randomly placed
measurements along the way, Fig. 1. The coastline for lake Shira is available from ESRI
(a shape file .shp in its proprietary format), it contains 578 data points, and it provides
resolution in tens of meters, which is more than sufficient for our goal. The area around
the lake, and presumably, its bottom relief are characterized by rather gentle topography.

Fig. 1: Coastline of lake Shira and loca-
tion of points where the bottom topogra-
phy was measured. The dots are connected
by thin line which is the sequence of the
points within the file - presumably along
the trajectory of the boat, but some erratic
zig-zags and crossings are hard to explain.

The task of reconstructing continuous field from irregularly scattered point data
is very common in numerical modeling and engineering, resulting in abundance of nu-
merous methods. Yet, there is no tendency to converge toward one or few universal ap-
proaches. This is mostly explained by the speculative nature of the problem – essentially,
in addition to the available data one should utilize some a priori knowledge about the
properties of the object being modeled, and use it as a guideline to select or construct an
algorithm. From this moment the problem can no longer be viewed as purely mathemat-
ical interpolation, but rather as making a physical model. In mathematical terms this is
often formulated through a variational principle: postulation the desired properties of the
field to be reconstructed, and expressing it in terms of an integral functional which needs
to be minimized. It is equivalent to formulation a goal or penalty function, and, because

68



Journal of Oceanological Research, 2018, Vol. 46, No. 3, pp. 67–84

this can be done in a non-unique way, this leads to variety of methods.

Overview of existing techniques

Perhaps by far the most common technique to handle interpolation of scattered data
is Delaunay triangulation followed by some interpolation algorithm – in the simplest case
linear within each triangle, but there are other options as well. They are readily available
in Matlab as griddata function, so it would be natural to explore them first.

An immediate restriction of triangulation-based methods is that they cannot provide
any values outside the convex area connecting the points, and because there are too few
measurements near the coast, so it is natural to augment the available bathymetry data with
points on the shoreline where the depth is presumed to be zero (or set to a user-specified
minimum value). At this stage we made an algorithm to scan the entire combined data
set to identify and exclude potentially contradictory data: either because of GPS errors
or echo sounder errors, when the depth is measured again in nearly the same location
(perhaps a later time, or on different/return pass by the boat), the measured value does
not repeat itself exactly. Such data entries were averaged (including their coordinates and
measured values) and merged into single point. In addition, one measured point ended up
on land and was discarded. The placement of combined data is shown in Fig. 2. Once the
data is extended, triangulation can cover the entire lake.

A note of caution related to the selection of an appropriate coordinate system in
which interpolation is performed: because griddata interprets its input arguments as
Cartesian coordinates, it computes distances simply as

d =
√

(xj − xk)2 + (yj − yk)2 ,

and uses them for deciding which points are connected into triangles. As the result, an
innocent-looking

zout = griddata(zlon, zlat, z, rlon, rlat);

Fig. 2: Topographic data from Fig. 1 aug-
mented by the coastline points, where the
depth is expected to vanish. The data was
also inspected for coincident points and
three of them were removed. There are to-
tal of 839 points here, 578 of which belong
to the coastline. This data was used for all
the comparisons performed in this section.

69



Shchepetkin A.F., Volodko O.S.

.

.

Fig. 3: Triangulation (left column) and bottom topography (right column) of lake Shira recon-
structed from scattered data by linear interpolation within each triangle shown on the left side in
the corresponding row. Upper row – applying Matlab function griddata(...,’linear’)
directly in geographical lat-lon coordinates; lower row – after conformally transforming coordi-
nates to flat-plane Cartesian system. White dots in each panel on the right indicate the location of
the actual data points.

results in a very erroneous triangulation, if zlon,zlat are geographical longitude and
latitude coordinates of scattered data points expressed in degrees; and so do rlon,
rlat – longitude and latitude of the nodes of regular grid. This is illustrated in Fig.
3. Although this seems to be obvious – e.g., at 60◦N the distance in north-south direction
corresponding to 1◦ increment in latitude is twice as much to the distance in east-west
direction corresponding to 1◦ increment in longitude – there are still numerous Matlab
scripts circulating within the ROMS modeling community where griddata has is used
directly in lon-lat coordinates in such manner. The remedies are readily available: An in-
tuitive way to correct the situation is to conformally transform the horizontal coordinates
(both ROMS grid and data points) into flat Cartesian coordinates: in the simplest case
of very small domain just to multiply longitude by cosine of the median latitude; a more
diligent way would be to use Lambert conformal conical projection with its two standard
latitudes optimally chosen for the particular modeling domain (minimum distortion). For
large grids (the size of the domain becomes comparable with the radius of the Earth) the
distances can no longer be accurately compared on a conformal projection map, however
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it is possible to create ROMS grid with perfectly isotropic resolution: local metric factors
pm = pn everywhere, despite the fact both pm and pn change significantly along the
entire grid. In this case a natural approach is to use grid-index coordinates of ROMS grid,
and, correspondingly, express the locations of measured data points in terms of indices
on ROMS grid and fractional parts of indices for the precise location within each cell. In
essence, this relies on the property of conformal grids which locally are almost Cartesian.

While the version of interpolated topography shown the bottom row of Fig. 3 is
technically correct, it is clearly not acceptable for the purpose of numerical modeling: it
is non-smooth, has jagged contour lines, and some of its features – notably the kink next
to coastline close to the upper-left corner are questionable and potentially spurious. Be-
sides "linear", griddata supports three other potentially viable options: "cubic",
"natural", and "v4". Their outcomes are shown in Fig. 4.

In each row shown on the right is point-wise Laplacian computed from the field
on the left. The absolute scale does not matter, but the scale in exactly the same on all
plots presented here. Computing point-wise Laplacian is useful to expose discontinuities
of first and second derivatives, and this way evaluate the quality of interpolation. Also it
is possible to track down both resolution/placement of the initial source data, as well as
the algorithm itself (if unknown). Thus, in the case of "linear", Laplacian vanishes is
exactly inside each triangle, but because of the discontinuity of the first derivatives at the
edges, computing discrete Laplacian yields large values there, exposing the triangulation
itself, with color intensity of line proportional to the discontinuity in the first derivatives
(essentially angle of bent between to flat facets).

In the case of "cubic", the facets are no longer flat, but the triangulation lines
are still clearly visible. This indicates discontinuity of the first derivatives. Overall there
is no noticeable improvement in comparison with "linear": the contour lines are still
jagged sharply at the lines connecting discrete points.

The natural neighbor ("natural") is another triangulation-based algorithm, but it
produces no triangulation lines in its Laplacian, and the resultant field is continuously dif-
ferentiable, except at the data points themselves. One obvious artifact is that that the data
points act like tension points resulting in reverse curvature of the contour lines between
the points, and sharp kinks at the points themselves (a very similar pattern would occur
if one solves Laplacian equation ∇2f = 0 everywhere, except a set of discrete points
fk = f(xk, yk), where the function is forced to have the prescribed value). All nine ship
tracks in NE-SW direction are clearly identifiable in Laplacian, and in the bathymetry
itself.

The last option, "v4", is biharmonic spline interpolation. It produces continuous
and continuously differentiable field, which is smooth everywhere including at the data
point locations. Its drawback is that, in comparison with other methods, and to a much
stronger degree than they, it has tendency to produce artificial bumps and holes, which
we believe are spurious. Thus, on the bottom-left panel in Fig. 4, the bump next to the
northern coast, and the hole in deep area next to it, are more pronounced than in all other
plots, and close examination of placement of the data points (indicated by white dots in
all panels in this figure) reveals that neither bump, nor hole have any measurements inside
to confirm that the extrema are real. Similar, although not as dramatic, observations can
be made about some other extrema found in this panel.
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cubic interpolation

natural neighbor

biharmonic spline (via griddata(..., ’v4’)

Fig. 4: Comparison of commonly available techniques to interpolate scattered data onto
regular grid: left column: resultant bathymetry; right: point-wise Laplacian of the field on
the left shown here as a measure of its smoothness. White dots in the left panels indicate
the location of the actual data points.
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So far, none of the techniques considered by us produced an acceptable version of
bottom topography suitable for hydrodynamic modeling of lake Shira. In the next section
we examine this algorithm in more detail with the intent to understand the causes of this
behavior, and ultimately to eliminate them.

Biharmonic spline interpolation

The last technique shown on Fig. 4, biharmonic spline interpolation, was success-
fully applied by Sandwell (1987) to create gridded fields from altimetry data from Geos-3
and Seasat altimeter satellites. Because satellites produce measurements with higher res-
olution along the track, while having sparse coverage in perpendicular direction, and be-
cause in addition to that ascending and descending track yield approximately 60-degree
criss-cross patterns, the data placement is similar to that of irregular triangular grids.
With some modifications to control the undesired oscillating, this technique was applied
by Smith and Wessel (1990) to produce gridded bathymetry for from ship measured data.

Sandwell (1987) procedure is outlined as follows:
Similarly to one-dimensional cubic spline, which satisfies the variational principle

of being a continuous function having the minimum possible integral of the square of its
second derivative, while at the same time, constrained by the condition of be equal to the
prescribed value at every data point, the two-dimensional interpolation is constructed as
a 2D function f = f(ξ, η) such that it has minimum possible integral of the square of its
Laplacian,

Φ =

∫∫
ξ,η∈D

(
∇2f

)2
dξd η , ∇2 =

∂2

∂ξ2
+
∂2

∂η2
(1)

while at the same time it assumes all the given values at data points,

f(xk, yk) = fk, ∀k = 1, ..., K . (2)

The 2D integral above over the entire computational domain. In its turn, variational
derivative of such integral with respect to the function is bilaplacian (Laplacian of Lapla-
cian) of the function itself,

δΦ

δf
= ∇4f , (3)

e.g., Briggs (1974). Then, we demand that the bilaplacian is equal to zero everywhere,
except the data points, where it is delta function.

∇4f = 0 , (ξ, η) 6= (ξk, ηk), k = 1, ..., K . (4)

This leads to Green function

G(ξ, η) =
(
ξ2 + η2

)
·
[
ln
√
ξ2 + η2 − 1

]
(5)

which is continuous, and has its first derivatives continuous at ξ = 0, η = 0 as well,
despite having ξ2 + η2 under logarithm,

G
∣∣
(ξ,η)→(0,0)

→ 0 ,
∂G

∂ξ

∣∣∣∣
(ξ,η)→(0,0)

→ 0 ,
∂G

∂η

∣∣∣∣
(ξ,η)→(0,0)

→ 0 , (6)
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and its bilaplacian is zero everywhere, except in ξ = 0, η = 0, where it is delta function.
The interpolation f is therefore constructed as

f(ξ, η) =
K∑
j=1

wj ·G(ξ − ξj, η − ηj) (7)

where (ξj, ηj) are the data points. Weights wj are determined from the set of conditions
that f(ξ, η) assumes prescribed values at every data point, fk = f(ξk, ηk), or

fk =
K∑
j=1

wj ·G(ξk − ξj, ηk − ηj) , ∀k = 1, ..., K (8)

where within the summation one should skip j = k to avoid singularity of logarithm,
mathematically it does not matter because G → 0 as (ξ, η) → (0, 0). Therefore the
problem reduces to solving a full-matrix linear system of equations matrix size K × K.
The matrix of the system is symmetric. It is expected to have some of the coefficients very
large, others be very small resulting in the need for special care to avoid accumulation of
errors when solving this system. Direct solution of 8 requires O (K3) operations. The
interpolation itself, requires computing and adding up K Green functions at every point
of the modeling grid (e.g., ROMS grid), hence needing O (Nξ ·Nη ·K) operations more.

This clearly indicates the limits of practical applicability of Sandwell’s method.
Specifically for this problem we designed a version of fully-pivoted Gauss-Jordan linear
solver, where the criterion for selecting pivot (both in raw and column) not just the largest
by absolute value element, but the one which yields the maximum ratio of the largest by
absolute value element within the raw to the next largest within the same raw, and then
maximum over all raws. Other than that, the solver generally follows guideline of Press
et al. (1992, see Sec. 2.1 there), and in addition to this it is parallelized for multi-threaded
shared-memory environment via Open MP. In practice this solver can handle systems
resulting from several thousand data points – well beyond the needs to the data set for
lake Shira we have (∼ 1000 points, topography + coastline).

The other noticed drawback of Sandwell’s method is the tendency to produce spu-
rious oscillations when applied to rough data. In fact, Sandwell himself discusses the
approach to relax the requirement that interpolation function exactly reproduces values
at all the data points, proposing to allow some tolerances and use a least-square fit. Of
course, an immediate dilemma on this path is how to assign weighs to each difference –
effectively decide which measured values to be trusted more, and which less.

To address the spurious oscillations Smith and Wessel (1990) proposed to replace
the bi-harmonic equation (4) with

A∇4f +B∇2f = 0 , (ξ, η) 6= (ξk, ηk), k = 1, ..., K . (9)

which is motivated my the concept of splines under tension, and is equivalent to another
form of functional to be minimized

Φ =

∫∫
ξ,η∈D

{
A
(
∇2f

)2
+B (∇f)2

}
dξd η , (10)
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where the addition of pure Laplacian in the first- and (∇f)2 term in the second equa-
tion indicates that the interpolation function should not me just a surface with minimum
possible curvature, but should also go from one data point to the next with as uniform
ascend/descend rate as possible. In the absence of ∇4f -term pure Laplacian produces
surface which satisfies the monotonicity principle, however this also results in sharp kink
in slope at every data point. Including ∇2f -term smoothes the kink to a degree, depend-
ing on the selected values of weights A,B. In the general case A,B 6= 0 no analytical
forms of Green function are known, and furthermore, Smith and Wessel (1990) not even
interested in such, because they pursued approach of solving (9) numerically with the
expectation that the data set they intent to deal with is too big for the Green function
approach be useful due to the inherent O (K3)-operation barrier.

It should be noted that although Smith and Wessel (1990) state that in the case
of B = 0 their approach reverts back to Sandwell’s, strictly speaking it does not: as a
mater of fact, Green function for the relevant differential operators are defined only for
a specified sets of boundary conditions. Green function (5) corresponds to the infinite
domain. This also makes it translationally invariant, and therefore universal: it does not
depend on the point (ξk, ηk) around which it is centered. If, in addition to equation (4),
G(ξ, η) must also satisfy boundary conditions at the outer edge of the domain, then each
data point (ξk, ηk) should have its own unique form of Green function.

Because of the highly scale-selective nature of biharmonic operator, common relax-
ation techniques are too inefficient to solve (9). Smith and Wessel (1990) pursue multigrid
approach, resulting in complicated, but powerful software, which is also openly available,

http://gmt.soest.hawaii.edu/doc/latest/surface.html.

The optimal A,B-weighting is still to be determined empirically as a compromise
between smoothness of the resultant interpolated field and robustness of the method, with
no adaptativity to local conditions in mind.

Biharmonic spline with pre-processed scattered data

In this section we revisit Sandwell (1987) approach to identify the causes of spuri-
ous oscillations with the intent to prevent them by preprocessing scattered data.

By the construction biharmonic spline assumes all the prescribed values at the data
points. The interpolated values at a given location are essentially weighted sums of data
points, and because of Green function spatial structure, the weights decreasing with as
inverse second power of the distance. As the result, if there is a pair of data points close
to each other, while all other surrounding data points are further away in comparison with
the distance between the two, then the local gradient of the interpolant is set by the ratio
of the difference between the values at the two points and the distance between them.
This may yield very erroneous gradient because the distance is affected by the errors in
GPS coordinates, and the smaller the distance, the less reliable are the measurements.
Linear methods do not produce oscillations, but in response to such data entries the tend
to produce discontinuities – almost vertical walls in the interpolated field. Indeed, visual
inspection of Fig. 3 reveals the presence of such pairs of ”bad” points.

To address the issue, we implemented a procedure to inspect to identify the pairs
which are closer to each other than a user-specified threshold, and reconcile them: the two
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Fig. 5: Preprocessed data. In this case the
threshold value for the minimum allowed
distance was set to dLmin = 150m which
caused averaging out 39 pairs, hence elim-
inating same amount of points out of to-
tal of 264 where topography was measured
(points on the coastline were not affected).

points are replaced with one having the half-and-half averaged coordinates and measured
value. In practice it is a bit delicate because of the inherent data dependency: if three or
more points come too close to each other, the location of the averaged point may change
the status of logical condition of whether or not some of the source points should be
averaged – in may end up at some distance further away from its neighbor. To resolve
this, the procedure begins with a very small threshold – only a fraction of user-specified
value, and gradually increasing it until reaching the user-specified value. This way, only
two-point averaging takes place at any stage. An example of data preprocessed this way is
shown in Fig. 5. Perhaps visually indistinguishable from Fig. 2, close comparison shows
only few instances where close points from Fig. 2, were replaced with single ones, but
obviously, there is no overall decimation of data.

The effect of averaging with progressively increasing threshold of minimum al-
lowed distance dLmin between the data points is illustrated in Fig. 6. It is significant:
bumps-and-deeps which we believe spurious disappear. Fig. 7 shows this in detail: by
comparing locations of the data points (indicated by white dots) from one panel to the
next, it is possible to identify which pair of close points causes appearance of each spuri-
ous feature.

However, after exceeding dLmin = 100m there is also noticeable removal of useful
data points, which is, obviously, undesirable. This motivates us to design a more selective
criterion for identifying unreliable data: not only by the distance, but by the measured
values as well. After some experimentation we came up with(

zj − zk
dZmax

)2

+ dL2
min > dL2 where dL2 = (xj − xk)2 + (yj − yk)2 (11)

where dLmin is minimum allowed distance, and dZmax is maximum allowed topographic
slope. The rationale is that if two data points indicate that point-wise slope

|zj − zk|
dL

> dZmax, (12)
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no averaging 25m

50m 100m

150m 200m

Fig. 6: Sensitivity of reconstructed bottom topography to the threshold of minimum allowed dis-
tance below which the data points are merged, left-to-right, top-to-bottom: no averaging, 25m,
50m, 100m, 150m, and 200m. Note progressive disappearance of pairs of adjacent deep and shal-
low spots as the threshold increases.
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no averaging 100m

150m 250m

Fig. 7: Detailed view explaining the appearance of spurious topographic features due to closely-
placed data points in the case of bi-harmonic spline interpolation: on all panels the white dots
indicate location of the actual data points which were used for reconstruction of 2D field in each
particular case - these are the remaining points after imposing the constraint of minimum distance.
In the case of raw data (top left) the presence of the bump and hole in the upper-left corner is solely
due to the presence of two data points between them at a very small distance from each other.
A small discrepancy in measured values in these two points, and the fact that the interpolated
field assumes exactly the two values, causes assume steep gradient between the points, and the
smoothness of the spline causes it to produce bump and hole. Because neither bump, nor hole
contain any data points recording their extremal values, these features should be considered as
spurious (at least, their existence are not established by the data). Once the two points are merged
into one (right panel on top, and both panels below), the bump and hole disappear. A similar
bump-and-hole pair pattern on the shallow area close to the right edge in top two panels, reduces
to just an indent once the minimum allowed distance is set to 150m), and can be considered as
spurious as well, however pattern in the deep part contains some data points close to the extrema,
and can be considered as realistic.
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exceeds some limit dZmax beyond which it is considered unrealistic, then the pair xj and
xk should replaced with a single one,

xj′ = (xj + xk) /2 , zj′ = (zj + zk) /2, (13)

i.e., averaged. This does not mean that the data is discarded completely – the averaged
point still contributes to the calculation of interpolated bathymetry, but it no longer affects
the local gradient of the interpolant. The other threshold, minimum allowed distance
dLmin, is related to the accuracy of GPS, and should be chosen to be at least an order
of magnitude larger in order to make sure that relative distances between the data points
are computed reliably. Again, if two points are found too close to each other, computing
gradient is considered unreliable, but their averaged value should be taken into account.
The combined criterion (11) essentially acts like a penalty function, taking into account
both the distance and the slope, with both factors are contributing toward decision to treat
data is not reliable.

Fig. 8, top panel shows a version of reconstructed topography obtained by using
combined criterion. In comparison with Fig. 6 we note that all spurious features have been
removed, but this is achieved at much lesser price of of removing potentially useful data:
setting dLmin = 50m and dZmax = 0.04 leads to removal of only 13 points, however,
using purely minimum distance criterion requires dLmin = 100 → 150 to remove hole-
and-bump feature on the upper-right corner on the corresponding panels in Fig. 7, and at
this point decimation of useful data points becomes already noticeable.

The remaining artifact on Fig. 8, top is the noticeable wavy patterns in the isolines
which can be visually correlated to the location of data points: e.g., tracing the contour
lines going along the north-eastern coast, where the bathymetry is shallow and smooth,
an can get an impression that the lines are forced go closer to the coast in the vicinity
of a each data point, causing them to make a turn with a small radius, then relax back
away from the coast in between, only to make tight turn again near the next point. This is
related to the non-analytical behavior of Green functions (5) at the data points: while the
G = G(ξ, η) and its first derivatives are continuous, the Laplacian is not. This artifact can
be counteracted by applying biharmonic smoothing,

f (m+1) = f (m) − τ (m) ·∆ξ4 · ∇4f (m) (14)

where ∆ξ is horizontal grid spacing (in our case the horizontal grids are designed in
such a way that resolution is locally the same in both directions, ∆ξ = ∆η at every
location, despite the fact that grids are curvilinear, and resolution is nonuniform), and
∇4f = ∇2 (∇2f) where ∇2 is discrete 9-point Mehrstellen Laplacian operator,

∆ξ2 · ∇2 =
2

3
· ∇2

+ +
1

3
· ∇2
× =

 1/6 2/3 1/6

2/3 −10/3 2/3

1/6 2/3 1/6

 (15)

which has the property that its leading-order truncation error can be expressed as Lapla-
cian of Laplacian. As the result, if applied to a discrete field fi,j obtained by sampling
an analytical function at grid points, and Laplacian of this function is zero, then the dis-
crete Mehrstellen operator vanishes with fourth-order accuracy, while the conventional
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Fig. 8: Top panel: Bathymerty of lake Shira reconstructed from scattered data using combined
criterion (11) with minimum allowed distance dLmin = 50m and maximum topographic slope
dZmax = 0.04. In this case only 13 points from the original data set of 264 were removed by
averaging. Bottom: Same as above, but after applying 120,000 biharmonic smoothing iterations.
The most noticeable difference is lesser wavy pattern in the isolines along the north-eastern coast.
In the upper version this clearly corresponds to the locations of the data points visually ”pushing”
the isolines toward the coast.

5-point cross + or × Laplacians only with the second. Another notable property of (15)
is that it is the most isotropic combination of + or × Laplacians, hence, if used as a
smoothing operator on a discrete grid, it yields in the best possible isotropy of the spread
of the field being smoothed. The bilaplacian is computed by repeated Laplacian. Using
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τ (m) = τ0 = (3/16)2 corresponds to the exact cancellation checkerboard mode as every
iteration. Twice as much, τ (m) = 2τ0 = 2(3/16)2, is the maximum beyond which the
iteration becomes unstable, if it is applied at every step m. To accelerate the iterations,
we use spread spectrum approach, by setting different τ for consecutive m in a repeated
sequence, τ (m) = τ0, 2τ0, τ0, 4τ0, τ0, 2τ0, ... The result is shown in Fig. 8 bottom panel,
where we have performed 120,000 iterations. The reason why so many iterations are
needed before any change becomes noticeable is because by the construction, bilaplacian
of a field reconstructed as sum of Green functions (5) has its bilaplacian equal to zero
everywhere, except at the data points. As the result, the primary effect of smoothing (14)
occurs in the vicinity of data points, where it restores analyticity of the field at the ex-
pense of some departure from the measured values. Bathymetry field in Fig. 8 panel is
continuously differentiable and its Laplacian (not shown) no longer exposes the location
of data points.

Conclusion

Realistic data always contains a certain amount of erroneous entries. Properly iden-
tifying and eliminating them is a nontrivial algorithmic dilemma, very specific to the
nature of the data. However, it is also the most efficient way to address the cause of errors
at the earliest possible stage, at ”source”, rather than deal with filtering out the conse-
quences later. In this article we develop and tested a technique for reconstructing bottom
topography of an enclosed basin from sparse scattered measurements.

The approach we found successful consist on augmenting scattered bathymetry data
with the coastline, where the depth is presumed to vanish or to go to some user-specified
minimum value. Doing so eliminates the possibility of admitting potentially inaccurate
extrapolated values near the coast, where measured data is typically not available, and
provide robust side boundary conditions for the slops when interpolation interior data.
This augmentation is followed by an automatic inspection of the combined data in order
to identify and eliminate potentially contradictory values which may trigger spurious os-
cillations of the subsequent biharmonic spline interpolation onto regular grid. In essence,
this implies averaging of selected data points which are too close to each other, so mi-
nor errors in their coordinates cause significant relative errors in distance between them,
resulting in potentially erroneous values of bathymetric slope. At the same time, we try
to keep preprocessing of the raw data at minimum in order to avoid excessive departure
from the measurement.

Overall, this approach is a drastic departure from the usual ROMS modeling prac-
tices which mostly rely on gridded data from major sources (Etopo, GEBCO, and SRTM30
PLUS, Becker et al., 2009), and use some degree of smoothing of topography: in the case
of lake Shira the data is simply too sparse to make any smoothing undesirable. The tech-
nique developed in this article was implemented as software completely free of using
any proprietary or license-restricted software, and is made publicly available to ROMS
modeling community.
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Чтобы моделировать течения и внутренние волны в водоёме необходимо
задать его рельеф дна в виде непрерывной, желательно непрерывно
дифференцируемой функции (если, конечно, не не существует физических
особенностей определяющих обратное). К сожалению, данные рельефа
с достаточным пространственным разрешением существуют далеко не
всегда. В этой статье мы рассмотрим ранее известные методы
построения полей на регулярных сетках из пространственно разбросанных
данных – в нашем случае это топография дна измеренная эхолотом с
катера оборудованного GPS – и представим метод который мы считаем
оптимальным для нашей ситуации. Наш подход в целом следует
методике работы Sandwell (1987), который предложил использовать
бигармонические сплайны выраженные через функции Грина для
интерполяции данных спутниковых измерений геофизических полей.
В нашем методе мы дополнили измеренные топографические данные
береговой линией, после чего подвергли получившийся массив специальной
обработке чтобы выявить и исключить противоречивые и/или ненадежные
данные, так чтобы впоследствии предотвратить нежелательные численные
эффекты (осцилляции) бигармонических сплайнов.

Ключевые слова: Построение сеточной функции из разбросанных данных;
Бигармоническая сплайн интерполяция; Выявление и отбраковка недостоверных
и ненадежных данных; Региональное моделирование океана
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