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Влажность воздуха в приповерхностном слое атмосферы над океаном является ключевым 
климатическим параметром, влияющим на процессы переноса влаги и тепла между 
океаном и атмосферой, а также на динамику атмосферных процессов в целом.
Анализ метеорологических данных, собранных в течение XX века, показывает 
разреженность рядов измерений влажности в пространстве и времени. Международный 
массив данных о характеристиках океана и атмосферы (ICOADS) указывает на 
недостаточную плотность измерений в начале XX века по сравнению с более поздними 
периодами, что создает сложности для адекватного анализа климатических тенденций 
относительной влажности.
Представленные в литературе методы восстановления временных рядов влажности 
зачастую демонстрируют ограниченную точность, основываясь преимущественно на 
статистических и эвристических подходах. Наша работа направлена на повышение 
качества решения этой задачи за счет применения методов машинного обучения.
В настоящей статье решена задача в формулировке аппроксимации моментальных 
значений относительной влажности по данным сопутствующих измерений атмосферного 
давления, температуры воздуха, скорости и направления ветра, температуры поверхности 
океана, а также наблюдений количества и типов облачности на трех ярусах. Кроме этого, 
в составе сопутствующих переменных используется код погоды по стандарту ВМО и 
расчетная высота солнца. В исследовании использованы модели машинного обучения 
следующих типов: линейная регрессия, дерево решений, случайный лес, градиентный 
бустинг и полносвязная искусственная нейронная сеть. Для повышения территориальной 
и временной специфичности разрабатываемых моделей мы провели исследование для 
каждой ячейки размером 2° по широте и долготе (географическая трапеция) и каждого 
сезона по отдельности. На основе полученных результатов были построены карты 
пространственного распределения ошибок моделей, которые позволили выявить регионы 
с высокой и низкой точностью аппроксимации влажности.
Исследование подтвердило эффективность методов машинного обучения для 
восстановления климатических рядов, определило наиболее подходящие модели для этой 
задачи и обозначило перспективные направления для дальнейшей работы.
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1. Введение

Влажность воздуха над океаном в приповерхностном слое атмосферы – важный 
климатический параметр, оказывающий значительное влияние на динамику атмо
сферы и обменные процессы между океаном и атмосферой.

Ряды измерений относительной влажности in situ за XX столетие характерны 
неравномерным наполнением (Александрова, Гулев, 2023). Данные международного 
массива измерений характеристик океана и атмосферы (International Comprehensive 
Ocean-Atmosphere Data Set, ICOADS (Freeman et al., 2017)) показывают, что начало 
XX века недостаточно обеспечено измерениями по сравнению с периодами, начиная 
с середины столетия (Александрова, Гулев, 2023). Такая неравномерность измерений 
препятствует адекватному анализу климатических тенденций относительной влаж-
ности как важнейшей характеристики атмосферы. Восстановление рядов измерений 
относительной влажности может стать ключевым фактором в понимании климатиче-
ских тенденций прошлого и современного климата.

В литературе существуют работы, демонстрирующие возможность аппрокси-
мации относительной влажности по сопутствующим измерениям, ряды которых бо-
лее наполнены по сравнению с рядами относительной влажности (Luminda Niroshana 
Gunawardhana et al., 2017; Jiajun Guo et al., 2023).

В одной из работ (Luminda Niroshana Gunawardhana et al., 2017) описывается 
подход к оценке суточной относительной влажности воздуха, основанный на исполь-
зовании статистически скорректированных данных о минимальной температуре из 
глобальной климатической модели (GCM). В этом исследовании авторы устраняют 
систематические погрешности в модельных данных, сопоставляя их с реальными из-
мерениями, чтобы получить скорректированную минимальную температуру. Затем, 
имея многолетние наблюдения о фактической влажности и локальной минимальной 
температуре, строят для каждого месяца эмпирические (линейные или квадратич-
ные) зависимости между этими двумя показателями. Используя полученные форму-
лы и скорректированные данные о температуре, вычисляют влажность для тех же 
суточных временных интервалов.

В другом исследовании (Jiajun Guo et al., 2023) предложен гибридный метод ап-
проксимации относительной влажности на основе метеорологических данных. В его 
основе лежат три составляющие: SARIMA (Seasonal Autoregressive Integrated Moving 
Average), используемая для выявления и моделирования сезонных колебаний относи-
тельной влажности; коинтеграционный анализ (Engle-Granger, EG), доказывающий 
наличие долгосрочной связи между влажностью и используемыми в работе метеоро-
логическими параметрами; модель коррекции ошибок (Error Correction Model, ECM), 
анализирующая краткосрочные отклонения относительной влажности от долгосроч-
ной траектории и определяющая факторы, которые в большей степени влияют на эти 
колебания.

В упомянутых работах применяются классические статистические методы или 
эвристические алгоритмы (Luminda Niroshana Gunawardhana et al., 2017; Jiajun Guo 
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et al., 2023). Для повышения точности восстановления относительной влажности в 
настоящем исследовании мы предлагаем новый подход к решению этой задачи, осно-
ванный на применении методов машинного обучения.

Целью этой работы является разработка и оценка моделей машинного обучения, 
способных аппроксимировать значения относительной влажности на основе доступ-
ных метеорологических данных. В терминах машинного обучения эта задача пред-
ставляет собой задачу восстановления регрессии, в которой целевой переменной яв-
ляется относительная влажность, а признаками – сопутствующие метеорологические 
наблюдения и измерения.

На первом этапе мы сформировали набор данных DISO3 (Dataset of  In  Situ  
Observations Over the Ocean) на основе данных ICOADS, включающий попутные ме-
теорологические измерения и наблюдения, а также соответствующие им расчетные 
значения относительной влажности. Эта база данных стала основой для обучения и 
оценки качества алгоритмов, основанных на подходе машинного обучения.

На втором этапе мы применили модели машинного обучения, для каждой из 
которых мы провели оптимизацию гиперпараметров – параметров, задающих кон-
фигурацию модели и процесса ее обучения, значения которых выбираются до начала 
обучения и не обновляются в ходе оптимизации модели по данным. Подбор гиперпа-
раметров позволил улучшить качество аппроксимации и обеспечить высокую обоб-
щающую способность моделей. 

На заключительном этапе мы исследовали обученные модели на предмет про-
странственного распределения точности. Анализ карт ошибок в сравнении с картами 
климатических характеристик (средней относительной влажности и ее изменчи-
вости) позволит оценить связь отклонений моделей с экстремальными значениями 
влажности или ее вариабельностью.

2. Данные и методы

2.1. Данные

В настоящем исследовании использовался набор данных  DISO3  – авторская 
база данных, сформированная на основе тщательно отобранных и предобработан-
ных данных из массива ICOADS (Freeman et al., 2017), который представляет собой 
самый крупный и полный массив метеорологических и океанографических данных, 
собранных за длительный период времени. ICOADS содержит данные о морской по-
верхности, сопутствующие метеорологические наблюдения и измерения за период с 
1662 г. по настоящее время. Пространственная плотность наблюдений и измерений 
базы данных ICOADS за период с 1950 по 2017 гг. показана на рисунке 1.

Историческая часть набора ICOADS включает записи, сделанные вруч-
ную в корабельных журналах, начиная с XVII века. С развитием технологий к 
ICOADS стали добавляться данные, собранные с буев, судов, береговых станций и 
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океанографических датчиков. Это позволило существенно повысить точность на-
блюдений, расширить их географическое покрытие и повысить пространственную 
плотность измерений.

Рис. 1 – Пространственная плотность наблюдений и измерений в базе данных ICOADS 
(Freeman et al., 2017) за период с 1950 по 2017 гг., в логарифмической шкале.  

Дискретизация по пространству – 2×2°

ICOADS охватывает практически всю поверхность Мирового океана, однако 
плотность варьируется в зависимости от региона и времени. В периоды до XX века 
наблюдения были ограничены активностью судоходства и чаще всего проводились в 
популярных морских маршрутах. Начиная с середины XX века, наблюдения стано-
вятся более систематичными, благодаря внедрению автоматических систем наблюде-
ний и международному сотрудничеству в области климатического мониторинга.

В DISO3 включены только тщательно отфильтрованные и скорректированные 
данные ICOADS, что позволяет избежать ошибок, связанных с некачественными за-
писями, характерными для исторических данных (Александрова, Гулев, 2023).

Фильтрация заключалась в удалении записей с пропущенными значениями 
основных параметров, таких как дата, координаты, температура воздуха и атмо
сферное давление. После фильтрации для каждого наблюдения были рассчитаны 
производные параметры. Относительная влажность определялась на основе темпе-
ратуры воздуха, точки росы и давления с использованием приближенного эмпири-
ческого соотношения. Высота солнца над горизонтом рассчитывалась по коорди-
натам, дате и времени суток на основе геометрической модели астрономического 
положения Солнца.
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DISO3 охватывает период с 1880 по 2017 гг. При этом в настоящей работе для 
обучения и оценки качества моделей были использованы данные за период с 1950 по 
2017 гг. (93 млн записей). На рисунке 2 показано общее годовое количество наблюде-
ний в наборе данных DISO3.

Рис. 2 – Общее годовое количество наблюдений в наборе данных DISO3

Набор данных DISO3 включает подмножество переменных, представленных 
в ICOADS. В таблице 1 мы приводим состав переменных, включенных в DISO3.

Табл. 1 – Состав переменных набора данных DISO3

Переменная Единицы измерения Наименование
Высота солнца над горизонтом градусы hsun
Атмосферное давление гПа slp
Температура атмосферы °С ta
Температура поверхности океана °С sst
Балл общей облачности окты icn
Балл облачности нижнего яруса окты icl
Тип облачности нижнего яруса класс согласно классификации ICOADS [ref] low
Тип облачности среднего яруса класс согласно классификации ICOADS [ref] mid
Тип облачности верхнего яруса класс согласно классификации ICOADS [ref] high
Код погоды код согласно классификации ВМО [ref] iww
Скорость ветра м/с ws
Направление ветра градусы от направления на север wd
Относительная влажность доли единиц rh

Для корректной работы алгоритмов машинного обучения, чувствительных к 
масштабу входных данных, все действительные признаки (числовые признаки с не-
прерывными значениями) были  стандартизированы. Под стандартизацией понима-
ется обезразмеривание признаков путем вычитания выборочного среднего и деления 
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на выборочное стандартное отклонение. Это позволяет привести данные к единому 
масштабу, где каждое значение отражает отклонение от среднего в единицах стан-
дартного отклонения.

Формула стандартизации для значения признака X выглядит следующим 
образом:

	 	
(1)

где X *– стандартизированное значение признака, X – исходное значение признака, 
μ – выборочное среднее признака, σ – выборочное стандартное отклонение призна-
ка X. В результате такого преобразования значения действительных признаков имеют 
среднее 0 и стандартное отклонение 1.

Также стандартизация данных позволила приблизить их распределение к нор-
мальному и заполнить пропуски в данных значениями, сгенерированными из этого 
распределения. Мы заполняли пропуски сгенерированными значениями для действи-
тельных переменных (скорость и направление ветра). При этом пропущенные значе-
ния для категориальных переменных (балл общей облачности, балл облачности ниж-
него яруса, тип облачности нижнего, среднего, верхнего яруса и код погоды) удалены.

2.2. Методы

2.2.1. Учет пространственно-временной изменчивости 
приповерхностной влажности

Приповерхностная влажность атмосферы зависит от множества факторов, кото-
рые сильно различаются в разных частях океана (Shakespeare, Roderick, 2024). Кроме 
того, в ряде регионов Мирового океана относительная влажность приповерхностного 
слоя атмосферы характеризуется существенными сезонными вариациями. 

Использование глобальных данных в рамках подхода обучения статистиче-
ских моделей (моделей машинного обучения) зачастую приводит к усреднению, 
скрывающему региональные и сезонные особенности (Borchert, 2008; Abraham, 
Goldblatt,  2023). Поэтому для повышения пространственной и временной специ-
фичности применен подход, основанный на разбиении всей водной поверхности на 
ячейки размером 2×2  градуса по широте и долготе. Это позволяет проводить ре-
гиональные оценки относительной влажности. Пространственные ячейки форми-
ровались на основе регулярной широтно-долготной сетки с шагом 2°, где границы 
каждой ячейки определяются целыми значениями широты и долготы. Такой способ 
построения обеспечивает непрерывное и неперекрывающееся покрытие всей иссле-
дуемой поверхности океана.

Дальнейшее улучшение точности достигается за счет разделения данных по 
сезонам внутри каждой ячейки, что позволяет учесть сезонные колебания относи-
тельной влажности. Из рассмотрения были исключены регионы, в которых меньше 
1000 наблюдений, поскольку такого количества данных недостаточно для надежного 
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обучения моделей машинного обучения. Кроме того, для ускорения обучения моде-
лей в регионах с более, чем 100 000 данных, выборка была сокращена до 100 000 
наблюдений. Распределение количества наблюдений в ячейках 2×2° в наборе данных 
DISO3 представлено на рисунке 3.

Рис. 3 – Распределение количества наблюдений в ячейках 2×2° в наборе данных DISO3

2.2.2. Подбор оптимальных гиперпараметров для моделей

Для того, чтобы минимизировать ошибку аппроксимации относительной влаж-
ности и повысить обобщающую способность алгоритмов машинного обучения, не-
обходимо подобрать оптимальные гиперпараметры каждой модели.  Для достижения 
этой цели была использована библиотека байесовской оптимизации Optuna (Akiba 
et al., 2019; Almarzooq, Waheed, 2024). В качестве алгоритма сэмплирования выбран 
TPESampler – алгоритм, основанный на построении вероятностных моделей распре-
деления гиперпараметров. 

Выбор TPESampler обусловлен его эффективностью в задачах с высокой размер-
ностью пространства гиперпараметров (Parizy et al., 2023). Этот алгоритм рациональ-
но использует информацию из предыдущих итераций, что позволяет быстрее схо-
диться к оптимальным значениям, требуя меньшего числа оценок целевой функции. 
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Его байесовский подход позволяет эффективно исследовать пространство поиска, из-
бегая ненужных вычислений в неперспективных областях.

2.2.3. Обучение моделей

Для исследования были выбраны пять моделей машинного обучения: линейная 
регрессия, дерево решений (Barry de Ville, 2013), случайный лес (Cutler et al., 2012) 
градиентный бустинг в реализации CatBoost (Hancock, Khoshgoftaar, 2020) и полнос-
вязная искусственная нейронная сеть (Minsky, Papert, 1969). Обучение каждой модели 
выполнялось отдельно для каждой 2×2-градусной ячейки с учетом разделения дан-
ных по сезонам. Для обучения моделей использовалось 70 % данных, упорядоченных 
по времени, а оставшиеся 30 % были отложены для оценки качества, сохраняя таким 
образом хронологическую структуру.

Приведем краткое описание принципа работы алгоритмов машинного обуче-
ния, которые использовались в работе.

Линейная регрессия – это один из наиболее простых методов машинного обу-
чения, предназначенный для аппроксимации непрерывной переменной на основе не-
зависимых переменных. Метод основан на предположении о линейной зависимости 
между целевой переменной и признаками. Модель оптимизируется методом наимень-
ших квадратов, который минимизирует сумму квадратов отклонений между аппрок-
симированными и фактическими значениями целевой переменной.

Главное преимущество линейной регрессии – ее вычислительная эффектив-
ность, которая позволяет обрабатывать большие объемы данных за приемлемое вре-
мя. Однако из-за предположения о линейности эта модель не способна улавливать 
нелинейные зависимости между признаками и целевой переменной, что приводит к 
снижению точности в тех случаях, когда реальные зависимости более сложные. 

Дерево решений – это алгоритм машинного обучения, который строит иерар-
хическую структуру (дерево) для последовательного разделения данных на подмно-
жества. Каждое ветвление дерева решений соответствует правилу, основанному на 
значении одного из атрибутов данных. Узлы дерева выполняют проверку значения 
конкретного атрибута, а листья представляют собой итоговые регрессионные значе-
ния. Процесс построения дерева начинается с корневого узла, который содержит всю 
исходную выборку данных. Алгоритм итеративно выбирает наилучший атрибут для 
разделения данных на основе определенного критерия качества. Для задач регрес-
сии этим критерием обычно является среднеквадратичная ошибка MSE, т. е. средний 
квадрат отклонений аппроксимированных значений от фактических в каждом подм-
ножестве. Оптимальный атрибут – тот, который обеспечивает максимальное умень-
шение MSE после разбиения. После выбора атрибута данные разделяются на подмно-
жества, соответствующие различным значениям атрибута. Этот процесс повторяется 
для каждого подмножества, создавая новые узлы и ветви дерева и продолжается до 
тех пор, пока не будет достигнуто заданное условие остановки. Этим условием может 
быть, например, достижение максимальной глубины дерева или минимального числа 
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элементов в узле. Процесс обучения деревьев решений относительно быстрый, что 
делает их эффективными при работе с большим набором данных. Более того, деревья 
решений эффективно справляются с нелинейными взаимосвязями между признаками 
и целевой переменной, в отличие от моделей, предполагающих линейность. Однако 
у этой модели есть существенный недостаток – склонность к переобучению: модель 
слишком хорошо запоминает обучающие данные, из-за чего демонстрирует низкую 
обобщающую способность. Использование деревьев решений в ансамблях решает 
проблему переобучения.

Случайный лес – это алгоритм ансамблевого обучения, который усредняет 
предсказания множества отдельных решающих деревьев. В отличие от использова-
ния одного сложного решающего дерева, подверженного переобучению, случайный 
лес минимизирует этот риск за счет создания множества более простых, но разноо-
бразных деревьев и усреднения их результатов. На первом этапе строится множество 
решающих деревьев. Во-первых, каждое дерево создается на случайной подвыборке 
исходного набора данных. Во-вторых, при построении узлов каждого дерева случай-
ный лес рассматривает не все признаки, а только случайное подмножество из них. На 
втором этапе каждое дерево в случайном лесу независимо формирует свою оценку 
целевой переменной. Итоговый результат получается путем усреднения этих оценок. 
Случайный лес обладает рядом преимуществ перед другими алгоритмами машинно-
го обучения. Высокая точность аппроксимации обусловлена ансамблевым подходом 
и низкой корреляцией между составляющими его деревьями. Кроме того, случайный 
лес демонстрирует высокую устойчивость к переобучению благодаря случайности 
в процессе построения деревьев. Это делает его эффективным для работы даже со 
сложными, зашумленными данными, содержащими выбросы. Также алгоритм под-
держивает параллельные вычисления, что позволяет существенно ускорить обучение 
на больших объемах данных.

CatBoost – это алгоритм ансамблевого обучения, представляющий собой усовер-
шенствованную реализацию градиентного бустинга. Его ключевое преимущество – 
эффективный способ обработки категориальных признаков, который значительно по-
вышает точность аппроксимации по сравнению с традиционными методами. Вместо 
стандартных подходов, CatBoost использует собственный алгоритм, основанный на 
построении вероятностных моделей для каждого категориального признака, учиты-
вая его влияние на целевую переменную. Алгоритм строит последовательность де-
ревьев, каждое из которых исправляет ошибки предыдущих, при этом порядок дан-
ных для обучения случайным образом меняется перед построением каждого дерева. 
Такой подход уменьшает влияние порядка данных на результат, делая модель более 
устойчивой к шуму и выбросам. Главное преимущество CatBoost в том, что он не тре-
бует предварительной обработки категориальных переменных, что упрощает процесс 
подготовки данных. Кроме того, CatBoost устойчив к переобучению благодаря ис-
пользованию упорядоченного бустинга. Также он эффективно обрабатывает большие 
наборы данных и поддерживает параллельные вычисления, что существенно сокра-
щает время обучения модели.
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Полносвязная нейронная сеть – это тип искусственной нейронной сети, в 
которой каждый нейрон одного слоя связан со всеми нейронами следующего слоя. 
Алгоритм можно разделить на два основных этапа: прямой проход и обратный про-
ход. Прямой проход начинается с подачи входных данных, представляющих собой 
вектор признаков, в первый слой, называемый входным. Каждый нейрон входного 
слоя передает значение соответствующего признака на следующий слой. В после-
дующих слоях каждый нейрон выполняет взвешенное суммирование значений, 
полученных от нейронов предыдущего слоя, добавляет к результату смещение и 
пропускает полученную сумму через активационную функцию. Активационная 
функция вносит нелинейность в модель, позволяя нейронной сети аппроксимиро-
вать сложные нелинейные зависимости между признаками и целевой переменной. 
В данной работе была выбрана активационная функция ReLU, исходя из ее вычис-
лительной эффективности, устойчивости к затуханию градиента и способности 
повышать обобщающую способность модели за счет разреженности активаций.  
После прохождения сигнала через все слои нейронной сети на выходе получаем 
значение целевой переменной. Обратный проход служит для коррекции весов и 
смещений, минимизируя ошибку аппроксимации. Для этого используется алго-
ритм обратного распространения ошибки. Суть алгоритма заключается в вычис-
лении градиента функции ошибки по весам и смещениям каждого нейрона. Гра-
диент показывает, как изменение весов и смещений влияет на величину ошибки. 
Затем, используя алгоритм оптимизации (в данной работе выбран Adam, ввиду его 
высокой эффективности и устойчивости), веса и смещения корректируются в на-
правлении, уменьшающем ошибку. Процесс обратного прохода включает вычисле-
ние частных производных функции ошибки по весам и смещениям, распространяя 
ошибку от выходного слоя к входному. Этот процесс повторяется итеративно на 
протяжении всего обучения, пока не будет выполнено заданное количество итера-
ций. В процессе обучения нейронная сеть находит оптимальные веса и смещения, 
которые позволяют ей наиболее точно аппроксимировать целевую переменную 
на основе входных данных. Преимущество полносвязных нейронных сетей в том, 
что они способны моделировать сложные, нелинейные зависимости в данных с 
высокой точностью. Кроме того, ее гибкость позволяет легко масштабировать мо-
дель, изменяя количество нейронов и слоев для адаптации к различным объемам 
данных и сложности задачи. Также простая интеграция методов регуляризации, 
например, dropout, позволяет эффективно бороться с переобучением и улучшать 
обобщающую способность модели.

2.2.4. Оценка качества моделей

Эффективность алгоритмов мы оценивали на основе нескольких критериев, 
включающих:

• количественную оценку: определено качество каждой модели на отложенной 
для теста выборке с использованием метрики качества;
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• оценку неопределенностей: проведена оценка неопределенности меры каче-
ства и целевой переменной, что позволило сделать выводы о надежности получен-
ных результатов;

• сравнение с тривиальной моделью: качество аппроксимации для каждой моде-
ли сравнено с качеством для тривиальной модели – базового алгоритма, который не 
использует входные признаки и аппроксимирует влажность, как среднее значение ве-
личины по региону. Это показало, насколько эффективно работает модель машинного 
обучения по сравнению с простым усреднением.

На основании этих оценок выбран алгоритм с наилучшими показателями для 
дальнейшего его применения.

Качество аппроксимации оценивалось на отложенной для теста выборке. Ме-
трикой качества была принята среднеквадратичная ошибка RMSE (2). Эта величина 
дает интерпретируемое и наглядное представление о том, насколько хорошо модель 
аппроксимирует данные, поскольку выражается в тех же единицах измерения, что и 
целевая переменная.

	 	
(2)

где N – количество наблюдений в выборке, yi – фактическое значение целевой пере-
менной для i-го наблюдения,  – полученное моделью значение целевой переменной 
для i-го наблюдения.

2.2.5. Анализ ошибок и сравнение моделей

По полученным результатам были построены пространственные карты ошибок 
для каждого сезона. Они отображают географическое распределение RMSE моделей.

Эти карты сопоставлены с климатическими картами относительной влажности 
(показывающими среднее значение по региону) и картами ее изменения. Сравнение 
карт позволило выявить зависимости между величиной ошибок аппроксимации и ха-
рактеристиками климата. В частности, такой анализ помог понять, связаны ли боль-
шие ошибки с экстремальными значениями относительной влажности или с ее высо-
кой вариабельностью.

Также были построены гистограммы распределения ошибок, которые позволи-
ли оценить стабильность моделей по разбросу значений RMSE.

Для оценки эффективности моделей машинного обучения их результаты были 
сопоставлены с тривиальной моделью, представляющей собой простейший подход к 
восстановлению относительной влажности: она аппроксимирует ее как среднее зна-
чение величины по региону. Сравнение проводилось посредством вычисления отно-
сительных ошибок, что позволило оценить, насколько значимо улучшение качества 
аппроксимации, достигнутого с помощью моделей машинного обучения, а также 
определить, оправдывает ли их сложность и вычислительные затраты повышение 
точности.
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2.2.6. Оценка неопределенностей меры качества и целевой переменной

Меры качества дают усредненное представление о точности моделей, позволяя оце-
нить, насколько хорошо они в целом аппроксимируют целевую переменную. Однако такие 
меры не отражают степень надежности полученных результатов. Для более точной оцен-
ки моделей необходимо учитывать неопределенности как меры качества, так и целевой 
переменной. Для этого в данной работе был использован подход бутстреп (Efron, 1979).

Бутстреп – это метод сэмплирования из выборки с возвращением, позволяющий 
оценивать неопределенности на основе множества подвыборок.

Процедура bootstrap начинается с определения размера bootstrap-выборки, кото-
рая, как правило, равна размеру исходной выборки. Затем определенное количество 
раз производится случайный отбор элементов из исходной выборки с возвращением. 
Это означает, что после выбора элемента он возвращается обратно в исходную вы-
борку, и, следовательно, один и тот же элемент может быть выбран несколько раз в 
одной bootstrap-выборке, а некоторые элементы исходной выборки могут вообще не 
попасть в конкретную выборку (OOB-выборка). В данной работе в каждой генерируе-
мой bootstrap-выборке выдерживалась хронологическая последовательность данных, 
что обеспечивало сохранение временной структуры исходных данных.

Для оценки неопределенности качества модели на каждой bootstrap-выборке 
обучается отдельная модель, RMSE которой оценивается на ее OOB-выборке. Итого-
вое качество модели определяется как среднее значение оценок, полученных на всех 
OOB-выборках, что позволяет учесть как случайный шум в данных (алеаторическая 
неопределенность), так и ограничения модели (эпистемическая неопределенность).

Для оценки неопределенности целевой переменной на каждой bootstrap-выборке 
обучается отдельная модель и сохраняются значения ее параметров. К каждому новому 
объекту применяются все обученные модели. Неопределенность целевой переменной 
оценивается как выборочное стандартное отклонение полученного множества оценок. 
Это стандартное отклонение отражает эпистемическую неопределенность модели.

3. Результаты

3.1. Оценка RMSE для моделей

Табл. 2 – Среднее значение RMSE для моделей.  
Лучшая модель выделена жирным шрифтом

Модель Среднее (по океану) RMSE
Зима Весна Лето Осень

Тривиальная модель 0.1050 0.1018 0.0890 0.1003
Линейная регрессия 0.1017 0.0974 0.0844 0.0955
Дерево решений 0.1021 0.0979 0.0849 0.0962
Случайный лес 0.0997 0.0952 0.0827 0.0935
Полносвязная нейросеть 0.0996 0.0951 0.0824 0.0932
Catboost 0.0989 0.0943 0.0818 0.0926
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В таблице показано среднее качество RMSE для моделей, обученных с опти-
мальными гиперпараметрами и протестированных на отложенных выборках. По зна-
чениям RMSE можно сделать вывод, что Catboost – лучшая модель по среднему каче-
ству на тестовой выборке.

3.2. Оценка неопределенности меры качества и целевой переменной

Табл. 3 – Среднее (по океану) значение RMSE по bootstrap-выборкам.  
Лучшая модель выделена жирным шрифтом

Модель Среднее (по океану) RMSE по bootstrap-выборкам (в долях)
Зима Весна Лето Осень

Тривиальная модель 0.10528 0.10210 0.08981 0.10137
Линейная регрессия 0.09614 0.09210 0.08028 0.09036
Дерево решений 0.09660 0.09239 0.08073 0.09096
Случайный лес 0.08560 0.08075 0.07127 0.07944
Полносвязная нейросеть 0.09651 0.09210 0.08097 0.09040
Catboost 0.09556 0.09122 0.07894 0.09013

Табл. 4 – Неопределенность меры качества в мере среднего по всему Мировому океану 
стандартного отклонения. Приведено в долях единицы.  

Лучший показатель за каждый сезон выделен жирным шрифтом

Модель Мера неопределенности
Зима Весна Лето Осень

Тривиальная модель 0.00018 0.00017 0.00017 0.00018
Линейная регрессия 0.00030 0.00029 0.00030 0.00029
Дерево решений 0.00056 0.00059 0.00054 0.00060
Случайный лес 0.00066 0.00067 0.00061 0.00067
Полносвязная нейросеть 0.00092 0.00093 0.00086 0.00088
Catboost 0.00084 0.00086 0.00072 0.00076

В таблицах представлены значения среднего по bootstrap-выборкам качества мо-
делей и среднее стандартное отклонение RMSE. Случайный лес – наилучшая модель 
по среднему качеству на bootstrap-выборках. При этом неопределенность меры каче-
ства низкая для всех моделей.

Табл. 5 – Неопределенность целевой переменной (относительной влажности) в мере 
среднего по всему океану стандартного отклонения. Приведено в долях единицы.  

Лучший показатель за каждый сезон выделен жирным шрифтом

Модель Мера неопределенности
Зима Весна Лето Осень

Тривиальная модель 0.00462 0.00444 0.00415 0.00436
Линейная регрессия 0.00843 0.00829 0.00743 0.00800
Дерево решений 0.01808 0.01847 0.01585 0.01867
Случайный лес 0.01287 0.01312 0.01114 0.01305
Полносвязная нейросеть 0.01434 0.01456 0.01245 0.01411
Catboost 0.01080 0.01078 0.00906 0.01045
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В данной таблице приведены значения среднего стандартного отклонения целе-
вой переменной. Тривиальная модель, линейная регрессия и Catboost показали наи-
меньшую неопределенность целевой переменной.

3.3. Оценка относительных ошибок

Табл. 6 – Относительные ошибки моделей.  
Лучший показатель за каждый сезон выделен жирным шрифтом

Модель Относительная ошибка (в %)
Зима Весна Лето Осень

Линейная регрессия 2.95 4.47 5.15 4.83
Дерево решений 2.78 3.87 4.64 4.18
Случайный лес 5.05 6.49 7.00 6.70
Полносвязная нейросеть 5.81 7.39 8.03 7.59
Catboost 5.27 6.75 7.48 7.08

В таблице 6 приведены значения относительных ошибок моделей. Полносвязная 
нейросеть, Catboost и случайный лес достигли существенно более высокого уровня 
качества по сравнению с тривиальной моделью.

3.4. Анализ пространственных карт и гистограмм

В этом разделе помещаем результаты оценки ошибок всех моделей, исполь-
зуемых в настоящем исследовании. Мы приводим эти результаты в форме агреги-
рованных ошибок (сезонных гистограмм ошибок в целом по всему Мировому оке-
ану) и в форме карт ошибок. Гистограммы ошибок приведены на рисунках 8 – для 
тривиальной модели, 10 – для модели линейной регрессии, 12 – для модели дерева 
решений, 14 – для модели случайных лесов, 16 – для модели градиентного бустин-
га в реализации CatBoost и 18 – для модели искусственной нейронной сети. Карты 
ошибок приведены на рисунках 9 – для тривиальной модели, 11 – для модели линей-
ной регрессии, 13 – для модели дерева решений, 15 – для модели случайных лесов, 
17 – для модели CatBoost и 19 – для модели искусственной нейронной сети. Для 
сравнения мы также приводим климатические характеристики влажности по дан-
ным DISO3 в целом по океану и в пространственном распределении. Так, на рисун-
ке 4 мы приводим гистограмму климатических средних относительной влажности 
(в долях единицы); на рисунке 5 отображено пространственное распределение кли-
матических средних относительной влажности атмосферы над Мировым океаном 
по данным DISO3. На рисунках 6 и 7 мы приводим гистограммы и карты дисперсии 
относительной влажности, характеризующие вариативность относительной влаж-
ности в ячейке 2×2°.
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Рис. 4 – Гистограммы климатических средних относительной влажности по сезонам, 
по данным DISO3

Рис. 5 – Карты климатических средних относительной влажности по сезонам,  
по данным DISO3
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Рис. 6 – Гистограммы разброса значений относительной влажности по сезонам, 
по данным DISO3

Рис. 7 – Карты разброса значений относительной влажности по сезонам
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Рис. 8 – Гистограммы ошибок тривиальной модели

Рис. 9 – Карты ошибок тривиальной модели
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Рис. 10 – Гистограммы ошибок линейной регрессии

Рис. 11 – Карты ошибок линейной регрессии
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Рис. 12 – Гистограммы ошибок модели дерева решений

Рис. 13 – Карты ошибок модели дерева решений
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Рис. 14 – Гистограммы ошибок модели случайных лесов

Рис. 15 – Карты ошибок модели случайных лесов
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Рис. 16 – Гистограммы ошибок модели Catboost

Рис. 17 – Карты ошибок модели Catboost
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Рис. 18 – Гистограммы ошибок полносвязной искусственной нейронной сети

Рис. 19 – Карты ошибок полносвязной искусственной нейронной сети
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Сравнение карт разброса относительной влажности и других карт климатиче-
ских характеристик относительной влажности, построенных по данным DISO3 (уна
следованным от коллекции ICOADS), с картами ошибок моделей позволяет сделать 
вывод, что качество моделей машинного обучения напрямую связано с изменчиво-
стью относительной влажности. Большая вариабельность относительной влажности 
усложняет задачу, так как в регионах с ее выраженной изменчивостью наблюдается 
широкий диапазон значений, что затрудняет выявление устойчивых зависимостей 
между признаками (сопутствующими метеорологическими измерениями и наблюде-
ниями) и целевой переменной. В таких условиях модели склонны ошибочно интер-
претировать случайные отклонения как закономерности, что приводит к ухудшению 
качества восстановления относительной влажности.

Кроме того, высокая изменчивость влажности может указывать на слож-
ные, нелинейные зависимости между признаками и целевой переменной. Ли-
нейные модели, такие как линейная регрессия, в силу заложенных в них пред-
положений не подходят для их выявления. Применение более сложных моделей 
способно улучшить качество, но требует больших объемов данных для более 
точных результатов. В настоящем исследовании наблюдался недостаток данных 
в некоторых регионах, что существенно ухудшило точность аппроксимации от-
носительной влажности.

Результаты показывают, что вблизи экватора, где изменчивость влажности ми-
нимальна, модели независимо от их сложности демонстрируют высокую точность. 
Однако с увеличением расстояния от экватора, где изменчивость возрастает, качество 
аппроксимации заметно ухудшается.

Сравнение карт ошибок моделей по сезонам также подтверждает эти выводы. 
В летний период, когда изменения влажности минимальны, даже простые модели по-
казывают хорошие результаты. Напротив, зимой или в переходные сезоны, характе-
ризующиеся высокой изменчивостью целевой переменной, ошибки аппроксимации 
значительно увеличиваются.

Эти результаты подчеркивают важность учета сезонных и географических осо-
бенностей при обучении моделей машинного обучения. В регионах с высокой измен-
чивостью влажности необходимы дополнительные меры для повышения точности, 
например, сбор большего объема данных или использование ансамблевых методов 
машинного обучения и нейросетей.

3.5. Сравнение моделей

Анализ ошибок показал, что полносвязная нейронная сеть и ансамблевые ме-
тоды демонстрируют значительно лучшие результаты по качеству и стабильности по 
сравнению с тривиальной моделью и простыми алгоритмами. 

Тривиальная модель, основанная на усреднении, игнорирует любые зависимо-
сти между признаками и целевой переменной, поэтому ее результаты подходят только 
для оценки базового уровня качества аппроксимации.
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Линейная регрессия, хотя и учитывает линейные зависимости, ограничена в мо-
делировании сложных, нелинейных взаимосвязей. В условиях высокой изменчивости 
влажности ее предположения о линейности приводят к большим ошибкам.

Дерево решений, в отличие от линейной регрессии, может учитывать нелиней-
ные зависимости. Однако оно подвержено переобучению, особенно при ограничен-
ном объеме данных, что делает его результаты менее стабильными.

Ансамблевые методы, такие как случайный лес и Catboost, обеспечивают более 
точные и стабильные результаты, поскольку они основаны на объединении множества 
деревьев. Случайный лес уменьшает переобучение, усредняя результаты множества 
деревьев, что повышает устойчивость модели к шуму и выбросам. Catboost улучшает 
результаты за счет последовательного уменьшения ошибок предыдущих деревьев.

Полносвязная нейронная сеть обеспечивает хорошее качество аппроксима-
ции благодаря своей способности моделировать сложные, нелинейные зависимости. 
Архитектура искусственной нейронной сети позволяет эффективно учитывать как 
локальные, так и глобальные закономерности, что особенно важно при высокой из-
менчивости данных. Кроме того, нейронные сети способны обучаться на сложных, 
шумных данных, выявляя скрытые взаимосвязи. 

4. Заключение

В этом исследовании были использованы модели машинного обучения для вос-
становления приповерхностной влажности атмосферы над океаном по данным сопут-
ствующих метеорологических измерений.

Результаты работы подтверждают эффективность алгоритмов машинного обу
чения для восстановления данных относительной влажности по сопутствующим 
измерениям и наблюдениям и позволяют повысить точность восстановления клима-
тических рядов по сравнению с тривиальными подходами, например, усреднением 
величины по регионам. Это подтверждается результатами экспериментов, в которых 
модели, такие как случайный лес, Catboost и полносвязная искусственная нейронная 
сеть, показали наилучшее качество, благодаря своей способности учитывать сложные 
нелинейные зависимости между признаками и целевой переменной.

Анализ результатов показал, что наибольшие ошибки аппроксимации наблюда-
ются в сезоны и в регионах с высокой изменчивостью влажности. Высокая вариабель-
ность относительной влажности создает дополнительные сложности для аппрокси-
мации. В таких условиях простые модели показывают низкое качество. В то же время 
в регионах, слабо обеспеченных данными наблюдений и измерений, даже более слож-
ные модели, которые обладают существенной выразительной способностью и могут 
учитывать более широкий спектр зависимостей, сталкиваются с ограничениями. 
Примененный в работе подход, основанный на разделении данных по 2-градусным 
ячейкам и сезонам, позволил учесть региональные особенности и сезонные колеба-
ния влажности, а также снизил ошибки аппроксимации.
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Анализ неопределенностей, проведенный с использованием подхода бутстреп, 
позволил оценить надежность полученных результатов и выявить наиболее значимые 
области для дальнейшего улучшения результатов. Одной из главных проблем, огра-
ничивающих точность результатов, является недостаточное количество данных, что 
снижает качество аппроксимации и повышает неопределенность.

Сравнительный анализ моделей выявил, что Catboost и случайный лес проде-
монстрировали наилучшие результаты в данной работе, что делает их лучшими мо-
делями для аппроксимации влажности. Catboost показал наивысшее среднее каче-
ство на отложенной выборке, а случайный лес показал наилучшее среднее качество 
по bootstrap-выборкам. Модели демонстрируют наиболее стабильные результаты с 
низкими значениями неопределенности как меры качества, так и целевой перемен-
ной, что подтверждает их способность к точному восстановлению относительной 
влажности.

Предложенный подход восстановления относительной влажности по данным 
сопутствующих измерений и наблюдений может быть в дальнейшем использован для 
восполнения недостающих значений в климатических рядах относительной влажно-
сти атмосферы над океаном. Это позволит расширить период климатических иссле-
дований, связанных с относительной влажностью, в прошлое на период наличия дан-
ных, представленных в ICOADS.

Перспективы дальнейших исследований включают несколько приоритетных 
направлений, способных существенно улучшить точность восстановления относи-
тельной влажности. Одним из важных направлений является разработка и внедрение 
новых моделей глубокого обучения, способных лучше учитывать сложные простран-
ственно-временные зависимости. Не менее значимым направлением является ис-
пользование дополнительных источников данных, например, реанализов. Еще одним 
перспективным направлением является разработка промежуточных моделей, кото-
рые оценивают дополнительные параметры и преобразуют их в новые признаки для 
обучения. Кроме того, попытки использовать темпоральные данные в рамках серии 
наблюдений в экспедициях также могут повысить точность, так как они позволят мо-
делям улавливать изменения во времени, что особенно важно для анализа климати-
ческих процессов.
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RECONSTRUCTION OF ATMOSPHERIC SURFACE HUMIDITY OVER 
THE OCEAN FROM RELEVANT METEOROLOGICAL MEASUREMENTS 

USING MACHINE LEARNING METHODS

S. A. Vostrikova1, M. A. Krinitsky1,2, S. K. Gulev2, M. P. Alexandrova2

1 Moscow Institute of Physics and Technology,
9, Institutskiy pereulok, Dolgoprudny, 117303, Russia,

e-mail: vostrikova.sa@phystech.edu;
2 Shirshov Institute of Oceanology, Russian Academy of Sciences,

36, Nakhimovskiy prospekt, Moscow, 117997, Russia, 

Air humidity in the near-surface layer of the atmosphere over the ocean is a key climate parameter 
that has a significant impact on the processes of moisture and heat transfer between the ocean 
and the atmosphere, as well as on the dynamics of atmospheric processes in general. Analysis 
of meteorological data collected during the 20th century shows the sparseness of humidity 
measurement series in space and time. The International Ocean and Atmosphere Data Set 
(ICOADS) indicates an insufficient density of measurements in the early 20th century compared 
to later periods, which creates difficulties for adequate analysis of climate trends in relative 
humidity.
Methods for approximating humidity time series presented in the literature often demonstrate 
limited accuracy, based mainly on statistical and heuristic approaches. Our work is aimed at 
improving the quality of solving this problem through the use of machine learning methods.
As a first, simplest approach, we solved the problem in the formulation of the approximation of 
relative humidity based on the data of accompanying measurements of atmospheric pressure, 
air temperature, wind speed and direction, ocean surface temperature, as well as observations of 
the amount and types of clouds at three tiers. In addition, the accompanying variables include 
the WMO weather code and the estimated solar altitude. The study used the following types 
of machine learning models: linear regression, decision tree, random forest, gradient boosting, 
and fully connected artificial neural network. To improve the territorial and temporal specificity 
of the developed models, we conducted a study for each 2-degree square and each season 
separately. The scikit-learn library and the package implementing the CatBoost model were 
used to train and apply the machine learning models. For each type of model, we optimized the 
hyperparameters using the Optuna Bayesian optimization library. Based on the results obtained, 
maps of the spatial distribution of model errors were constructed, which made it possible to 
identify regions with high and low accuracy of humidity approximation.
The study confirmed the effectiveness of machine learning methods for reconstructing climate 
series, identified the most suitable models for this task, and outlined promising areas for further 
work.

Keywords: relative humidity, data reconstruction, machine learning, regression, linear 
regression, decision tree, random forest, gradient boosting, multilayer perceptron
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